Welcome to LookChem.com Sign In|Join Free

CAS

  • or

287930-02-3

Post Buying Request

287930-02-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

287930-02-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 287930-02-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,8,7,9,3 and 0 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 287930-02:
(8*2)+(7*8)+(6*7)+(5*9)+(4*3)+(3*0)+(2*0)+(1*2)=173
173 % 10 = 3
So 287930-02-3 is a valid CAS Registry Number.

287930-02-3Relevant articles and documents

Highly efficient and selective one-pot tandem imine synthesis via amine-alcohol cross-coupling reaction catalysed by chromium-based MIL-101 supported Au nanoparticles

Gülcan, Mehmet,Gumus, Ilkay,Karatas, Yasar,Ruzgar, Adem

, (2021/01/09)

One-pot tandem synthesis of imines from alcohols and amines is regarded as an effective, economic and green approach under mild conditions. In this work, Au nanoparticles (NPs) dispersed on MIL-101 (Au/MIL-101) were demonstrated as highly active and selective bifunctional heterogeneous catalyst for production of various imine derivatives with excellent yields, via amine-alcohol cross-coupling reaction at 343 K in an open flask under an Ar atmosphere. Various physicochemical techniques, including inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (P-XRD), X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) and N2 adsorption-desorption, were used to characterize of the Au/MIL-101 catalyst. The obtained bifunctional catalyst is highly active and selective towards one-pot imine formation and exhibited the highest TOF (30.15-51.47 h?1) among all the ever-reported MOF-supported Au catalysts. The reaction mechanism of the imine formation from alcohol and amine over Au/MIL-101 catalyst was proposed. Mechanism experiment results demonstrate that Au NPs highly effective in activating oxidation of benzyl alcohol to benzaldehyde while the Lewis acid sites on MIL-101 catalyzed the second condensation step without interfering with the oxidation step. As a result, the excellent catalytic performance of Au/MIL-101 can be ascribed to the synergistic effect between Au NPs with Lewis acid sites in MIL-101.

Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D)

Romero, Eugénie,Oueslati, Saoussen,Benchekroun, Mohamed,D'Hollander, Agathe C.A.,Ventre, Sandrine,Vijayakumar, Kamsana,Minard, Corinne,Exilie, Cynthia,Tlili, Linda,Retailleau, Pascal,Zavala, Agustin,Elisée, Eddy,Selwa, Edithe,Nguyen, Laetitia A.,Pruvost, Alain,Naas, Thierry,Iorga, Bogdan I.,Dodd, Robert H.,Cariou, Kevin

supporting information, (2021/04/19)

The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient β-lactamases which render most β-lactam antibiotics useless. Herein, we report the development of a series of imino-analogues of β-lactams (namely azetidinimines) as efficient non-covalent inhibitors of β-lactamases. Despite the structural and mechanistic differences between serine-β-lactamases KPC-2 and OXA-48 and metallo-β-lactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 μM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 μM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of β-lactamases.

Rhodium catalyzed multicomponent dehydrogenative annulation: one-step construction of isoindole derivatives

Cheng, Biao,Lyu, Hairong,Quan, Yangjian,Xie, Zuowei

supporting information, p. 7930 - 7933 (2021/08/17)

A strategy for one-pot synthesis of isoindoles is describedviaa catalytic multicomponent dehydrogenative annulation of diarylimines, vinyl ketones and simple amines. In the presence of a rhodium catalyst and Cu oxidant, four C-H and two N-H bonds are activated along with the formation of one new C-C and two new C-N bonds, leading to a series of isoindole derivatives in good to very high isolated yields.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 287930-02-3