Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2921-88-2

Post Buying Request

2921-88-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2921-88-2 Usage

Description

Different sources of media describe the Description of 2921-88-2 differently. You can refer to the following data:
1. Chlorpyrifos is a kind of crystalline organophosphate insecticide, acaricide and miticide used primarily for the control of foliage and soil-borne insect pests in many kinds of food and feed crops. Chlorpyrifos is widely used around the world to control pest insects in agricultural, residential and commercial settings. Its largest usage amount is consumed in corn. It can also be used on other crops or vegetables including soybeans, fruit and nut trees, cranberries, broccoli, and cauliflower. The non-agricultural applications include golf courses, turf, green houses, and no-structural wood treatment. It can also be used as a mosquito adulticide, and used in roach and anti bait stations in child resistant packaging. Its mechanism of action is through suppressing the nervous system of insects via inhibiting acetylcholinesterase.
2. Chlorpyrifos is a chlorinated organophosphorus (OP) ester manufactured as an insecticide, acaricide, and miticide. Like the other OP insecticides, the most prominent toxicity of chlorpyrifos is associated with binding and inhibition of the enzyme acetylcholinesterase (AChE) in insects and mammals. Chlorpyrifos requires metabolic activation to chlorpyrifos oxon to yield anticholinesterase activity.First sold in 1965, chlorpyrifos is used globally to control agricultural and structural pests and mosquitos. In the 1990s, chlorpyrifos ranked as one of the top selling pesticides in the world, for the most part, replacing the persistent organochlorine insecticides. Over the last decade, concerns regarding toxicity to the developing nervous system have limited its use. By 2001, residential uses and uses in schools and parks were prohibited, and many agricultural uses were restricted and the US Residential use limitations were also imposed in Canada, Australia, and the European Union (EU). It continues to be used in large quantities to control crop damage worldwide. In the developing countries, excessive agricultural application and lack of protective devices result in hundreds of thousands of deaths yearly.
3. Chlorpyrifos is an organophosphate insecticide. It is lethal to A. melinus, G. ashmeadi, E. eremicus, and E. formosa adults (LC50s = 0.8, 6, 12, and 17 ng/ml, respectively). Chlorpyrifos induces mortality in O. insidiosus adults when applied to corn, sorghum, and alfalfa plants. It is toxic to mice (LD50 = 155 mg/kg). Postnatal day 11 to 14 exposure to chlorpyrifos (3 mg/kg) decreases nest building and defense behaviors in adult female mice. Formulations containing chlorpyrifos have been used in the control of insects in agriculture.

Chemical Properties

Different sources of media describe the Chemical Properties of 2921-88-2 differently. You can refer to the following data:
1. Chlorpyrifos (diethyl 3,5,6-trichloro-2-pyridyl phosphorothionate) is a white crystal-like solid with a strong odor. It does not mix well with water, so it is usually mixed with oily liquids before it is applied to crops or animals (ATSDR, 1997).
2. Chlorpyrifos belongs to the class of insecticides known as organophosphates. Technical chlorpyrifos is an amber to white crystalline solid with a mild sulfur odor. It is insoluble in water, but soluble in benzene, acetone, chloroform, carbon disulfi de, diethyl ether, xylene, methylene chloride, and methanol. Formulations of chlorpyrifos include emulsifi able concentrate, dust, granular wettable powder, microcapsule, pellet, and sprays. Chlorpyrifos is widely used as an active ingredient in many commercial insecticides, such as Dursban and Lorsban, to control household pests, mosquitoes, and pests. Formulations of chlorpyrifos include emulsifi able concentrates, granules, wettable powders, dust, microcapsules, pellets, and sprays. The US EPA has classifi ed chlorpyrifos as a GUP

Uses

Different sources of media describe the Uses of 2921-88-2 differently. You can refer to the following data:
1. Chlorpyrifos is a broad-spectrum organophosphate insecticide sold under the trade names of Dursban, Empire 20, Equity, and Whitmire PT 270. First registered in 1965 to control foliage- and soil-borne insect pests on a variety of food and feed crops, it is one of the most widely used and one of the major insecticides used residentially (U.S. EPA, 2000).
2. Chlorpyrifos belongs to a class of insecticides known as organophosphates. Technical chlorpyrifos is amber to white crystalline solid with a mild sulphur odour. Formulations of chlorpyrifos include emulsifiable concentrate, dust, granular wettable powder, microcapsule, pellet, and sprays. Chlorpyrifos is widely used as an active ingredient in many commercial insecticides such as Dursban and Lorsban to control household pests, mosquitoes, and pests in animal houses. The U.S. EPA classified chlorpyrifos as GUP.
3. Chlorpyrifos is an organophosphorus insecticide used to control insects on a wide variety of crops including fruits, vegetables, ornamentals and forestry
4. Chlorpyrifos is used to control many types of insect pests in a wide range of crops and ornamentals. It is also used to control household pests, including termites.

References

https://en.wikipedia.org/wiki/Chlorpyrifos https://www.epa.gov/ingredients-used-pesticide-products/chlorpyrifos

Physical properties

Chlorpyrifos is a white crystalline or irregularly flaked solid. Chlorpyrifos has a very faint mercaptan-type odor. Chlorpyrifos is not soluble in water. Chlorpyrifos can cause slight irritation to the eye and skin.

Definition

ChEBI: An organic thiophosphate that is O,O-diethyl hydrogen phosphorothioate in which the hydrogen of the hydroxy group has been replaced by a 3,5,6-trichloropyridin-2-yl group.

Air & Water Reactions

Insoluble in water. Chlorpyrifos reacts with water and most reactive hydrogen compounds. The rate of hydrolysis in water increases with pH, with temperature and with the presence of copper and possibly other metals that can form chelates.

Reactivity Profile

Chlorpyrifos is sensitive to heat and is decomposed by moisture. Chlorpyrifos is hydrolyzed by strong alkalis. Chlorpyrifos is corrosive to copper and brass. Chlorpyrifos is also corrosive to copper alloys. Chlorpyrifos reacts with water and most reactive hydrogen compounds. The rate of hydrolysis in water increases with pH, with temperature and with the presence of copper and possibly other metals that can form chelates.

Health Hazard

Different sources of media describe the Health Hazard of 2921-88-2 differently. You can refer to the following data:
1. Exposures to chlorpyrifos cause adverse health effects and poisoning. The symptoms include, but are not limited to, headache, dizziness, respiratory problems, muscular and joint pains, numbness, tingling sensations, incoordination, tremor, nausea, abdominal cramps, vomiting, sweating, blurred vision, respiratory depression, slow heart beat, nervousness, weakness, cramps, diarrhea, chest pain, pin-point pupils, tearing, salivation, clear nasal discharge and sputum, muscle twitching, and in severe poisonings convulsions, coma, and death. Exposures to chlorpyrifos cause adverse effects to the nervous system. The effects include phosphorylation of the active site, disturbance in the activity of the acetylcholinesterase (AChE) enzyme (inactivity). AChE enzyme is necessary to stop the transmission of the chemical neurotransmitter. In occupational workers, high concentrations of chlorpyrifos cause poisoning with symptoms of unconsciousness, convulsions and/or fatal injury. Persons with respiratory ailments and disturbed liver function are known to be at increased health risk. Also, repeated exposures to chlorpyrifos have been reported to cause disturbances in the process of brain development.
2. Cholinesterase inhibitor; heavy exposurecan produce acute, delayed, and chroniceffect; exhibits low to moderate toxicity inexperimental animals when administered byoral and dermal routes; however, severity ofeffects varies with species; highly toxic tobirds; ingestion of 1.5–2 g would probablyresult in onset of cholinergic effects in adulthumans.LD50 oral (rat): ~150 mg/kgLD50 oral (rabbit): 1000 mg/kgLD50 oral (wild bird): 5 mg/kgLD50 oral (chicken): 25 mg/kgLD50 skin (rat): ~200 mg/kgLD50 skin (rabbit): 2000 mg/kg.

Fire Hazard

Combustible material: may burn but does not ignite readily. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form.

Flammability and Explosibility

Notclassified

Agricultural Uses

Insecticide, Nematicide: A U.S. EPA restricted Use Pesticide (RUP). Chlorpyrifos is one of the most widely used insecticides in the U.S., both around the home and in agriculture. A broad-spectrum insecticide, originally used primarily to kill mosquitoes but no longer registered for that use. Chlorpyrifos is effective in controlling cutworms, corn rootworms, cockroaches, grubs, flea beetles, flies, termites, fire ants, and lice. It is used as an insecticide on grain, cotton, field, fruit, nut and vegetable crops, as well as on lawns and ornamental plants. It is also registered for direct use on sheep and turkeys, for horse site treatment, dog kennels, domestic dwellings, farm buildings, storage bins, and commercial establishments. Chlorpyrifos acts on pests primarily as a contact poison, with some action as a stomach poison. It is available as granules, wettable powder, dustable powder and emulsifiable concentrate. Top crop uses in California include cotton, alfalfa, almonds, and oranges.

Trade name

(Note: EPA Office of Pesticide Programs lists 2135 products, both active and past-registered) ALUDOR?; BAR 500 EC?; BRODAN?; CHLORBAN?; CHLORPIRIFOS 480 CE MILENIA?; CHOIR?; COROBAN?; CURIGNA?; CYREN?; DETMOL U. A. ?; DORSAN?; DORSAN?-C; DOWCO? 179; DURSBAN?; EF 121?; EMPIRE?; ERADEX?; GLOBAL CRAWLING INSECT BAIT?; KENSBAN?; LORSBAN?; MURPHY SUPER ROOT GUARD?; PAQEANT?; PILOT?; PYRINEX?); SCOUT?; SPANNIT?; STIPEND; TALON?; TAFABAN?; TERIAL?; TWINSPAN?

Safety Profile

Poison by ingestion, intraperitoneal, skin contact, and inhalation routes. Human systemic effects by ingestion: paresthesia, muscle weakness, coma. Experimental reproductive effects: developmental toxicity. Mutation data reported. When heated to decomposition it emits very toxic fumes of Cl-, NOx POx and SOx

Potential Exposure

A potential danger to those involved in the manufacture, formulation, and application of this insecticide.

Carcinogenicity

Some recent studies have reported associations between chlorpyrifos exposure and increased risk for cancer for farm workers participating in the Agricultural Health Study. Specifically, increased risk for glioma and rectal cancer has been associated with chlorpyrifos exposure . Chlorpyrifos was also one pesticide associated with trends toward higher incidence of lung cancer through 2001 . For all cancers though, follow- up periods are short and exposures are based on recall so results may be unreliable.

Environmental Fate

Biological. From the first-order biotic and abiotic rate constants of chlorpyrifos in estuarine water and sediment/water systems, the estimated biodegradation half-lives were 3.5–41 and 11.9–51.4 days, respectively (Walker et al., 1988)Soil. Hydrolyzes in soil to 3,5,6-trichloro-2-pyridinol (Somasundaram et al., 1991). The half-lives in a silt loam and clay loam were 12 and 4 weeks, respectively (Getzin, 1981). In another study, Getzin (1981a) reported the hydrolysis half-livesLeoni et al. (1981) reported that the major degradation product of chlorpyrifos in soil is 3,5,6-trichloro-2-pyridinol. The major factors affecting the rate of degradation include chemical hydrolysis in moist soils, clay-catalyzed hydrolysis on dry soil sPlant. The half-life of chlorpyrifos in Bermuda grasses was 2.9 days (Leuck et al., 1975). The concentration and the formulation of application of chlorpyrifos will determine the rate of evaporation from leaf surfaces. Reported foliar half-lives on tomato, orange and cotton leaves were 15–139, 1.4–96 and 5.5–57 hours, respectively (Veierov et al., 1988). Dislodgable residues of chlorpyrifos on cotton leaf 0, 24, 48, 72 and 96 hours after application (1.1 kg/ha) were 3.64, 0.13, 0.071, 0.055 and 0.034 μg/m2, respectively (Buck et al., 1980)Surface Water. In an estuary, the half-life of chlorpyrifos was 24 days (Schimmel et al., 1983).

Metabolic pathway

The metaboic fate of chlorpyrifos in soil, plants and animals is similar, with oxidative dealkylation or hydrolysis to diethyl phosphorothioate and 3,5,6-trichloro-2-pyridinol being the major route of detoxification. The latter metabolite is conjugated as the glycosides or glucuronides in plants and animals. De-ethylation is not a major route of detoxification in mammals. Activation by desulfuration to the active acetylcholinesterase inhibitor, chlorpyrifos oxon, occurs in both animals and plants but the compound is often not detected owing to its rapid rate of hydrolysis. Dechlorination of the chloropyridine ring also occurs in the environment, principally by photolysis.

Shipping

UN2783 Organo phosphorus pesticides, solid, toxic, Hazard Class: 6.1; Labels: 6.1-Poisonous materials. UN3018 Organophosphorus pesticides, liquid, toxic, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Degradation

Chlorpyrifos is hydrolysed in acid, neutral and alkaline solution (PM). In neutral solution (approximately pH 7 and 25 °C) the DT50 for decomposition was variously reported as between 29 and 72 days. DT50s in buffered solutions at pH 4.7,6.9 and 8.1 were reported as being 62.7,35.3 and 22.9 days respectively (Racke, 1993). Hydrolysis is much faster in alkaline solutions and the DT50 at pH 11 was reported as 0.5 day (Macalady and Wolfe, 1983). The mechanisms of hydrolysis and nature of the products are pH-dependent. As has been found with many organophosphates, O-dealkylation predominates at acid and neutral pH values and in alkaline solution the main mechanism is cleavage of the P-O-aryl bond. Macalady and Wolfe (1983) showed that in buffered aqueous polar solvent mixtures at pH 9.7 to 12.9 the only products were 3,5,6-trichloro- 2-pyridinol(2) and diethyl phosphorothioate (3). In near neutral solution (pH 7.68) the main products were desethylchlorpyrifos (4) and ethanol with lesser amounts of 2 and 3. The mechanism for base-catalysed hydrolysis is via SN2 hydroxide attack on phosphorus, whereas under acid and neutral conditions the nucleophile is water and the rate is pH-independent with a half-life of 72.1 days and 72.9 days being reported at pH 5 and 7 respectively. Chlorpyrifos oxon (10, Scheme 2) was much more easily hydrolysed (Kenaga, 1971). Pathways for the hydrolytic degradation of chlorpyrifos in acid and base solution are shown in Scheme 1.

Toxicity evaluation

Chlorpyrifos undergoes abiotic hydrolysis, photodegradation, and biotic degradation in soil and water. Depending on the soil type and climate, its soil persistence varies from 2 weeks to over 1 year. Microbial degradation is indicated by the shorter half-lives in natural soils than sterile soils. Chemical hydrolysis produces O-ethyl-O-3,5,6-trichloro-2-pyridyl phosphorothioate or 3,5,6-trichloro-2-pyridinol (TCP) and phosphorthioic acid at alkaline conditions. Half-lives in river and well waters vary from 4.8 to 38 days, with the rate of hydrolysis increasing with temperature and alkalinity. The estimated Log Koc of 3.73 predicts strong adsorption to soil and resist leaching to groundwater. Chlorpyrifos can persist indoors for several months. Oxidation of chlorpyrifos to its more toxic metabolite chlorpyrifos oxon could occur through photolysis, aerobic metabolism, and chlorination. Water chlorination is the major route of chlorpyrifos oxon formation. It is subsequently rapidly hydrolyzed toTCP.TCP and its glucuronide conjugates have been detected in fish tissues. The measured Kow of 4.8 indicates a potential for bioaccumulation in aquatic and terrestrial food chains.

Incompatibilities

Above 130°C this chemical may undergo violent exothermic decomposition. The substance decomposes on heating at approximately 160°C and on burning, producing toxic and corrosive fumes including hydrogen chloride, nitrogen oxides; phosphorous oxides, sulfur oxides. Reacts with strong acids; strong bases; causing hydrolysis. Attacks copper and brass. Contact with oxidizers may cause the release of phosphorous oxides. Contact with strong reducing agents, such as hydrides, may cause the formation of flammable and toxic phosphine gas.

Waste Disposal

This compound is 50% hydrolyzed in aqueous MeOH solution at pH 6 in 1930 days; and in 7.2 days at pH 9.96. Spray mixtures of <1% concentration are destroyed with an excess of 5.25% sodium hypochlorite in <30 minutes @ 100°C; and in 24 hours @ 30°C. Concentrated (61.5%) mixtures are essentially destroyed by treatment with 100:1 volumes of the above sodium hypochlorite solution and steam in 10 minutes. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.

Precautions

Occupational workers should be careful during handling and use of chlorpyrifos. The workplace should have adequate washing facilities at all times and close to the site of handling and use. Eating, drinking, and smoking should be prohibited during handling and before washing after handling. Containers should be kept away from foodstuffs, animal feed and their containers, and out of reach of children.

Check Digit Verification of cas no

The CAS Registry Mumber 2921-88-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,9,2 and 1 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 2921-88:
(6*2)+(5*9)+(4*2)+(3*1)+(2*8)+(1*8)=92
92 % 10 = 2
So 2921-88-2 is a valid CAS Registry Number.
InChI:InChI=1/C9H11Cl3NO3PS/c1-3-15-17(14,16-4-2)18-9-7(11)5-6(10)8(12)13-9/h5H,3-4H2,1-2H3

2921-88-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Supelco

  • (CRM48104)  Chlorpyrifossolution  certified reference material, TraceCERT®, 1000 μg/mL in methyl tert-butyl ether, ampule of 1 mL

  • 2921-88-2

  • CRM48104

  • 342.81CNY

  • Detail

2921-88-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name chlorpyrifos

1.2 Other means of identification

Product number -
Other names Chlorpyrifos

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Organophosphates and carbamates
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2921-88-2 SDS

2921-88-2Synthetic route

diethyl phosphorochloridothioate
2524-04-1

diethyl phosphorochloridothioate

sodium salt of 3,5,6-trichloropyridine-2-ol

sodium salt of 3,5,6-trichloropyridine-2-ol

Chlorpyrifos
2921-88-2

Chlorpyrifos

Conditions
ConditionsYield
With dmap; N-benzyl-N,N,N-triethylammonium chloride; sodium dodecyl sulfate; potassium carbonate In water at 50℃; for 2.5h; pH=9.5 - 10; Reagent/catalyst; Temperature; Time; pH-value;97.5%
With dmap; N-benzyl-N,N,N-triethylammonium chloride; boric acid; sodium chloride; sodium hydroxide In dichloromethane; water at 40℃; for 0.25h; pH=9.9; Reagent/catalyst; Solvent; Temperature;92%
With dmap; N-benzyl-N,N,N-triethylammonium chloride; sodium hydrogencarbonate; sodium carbonate; sodium 4-dodecylbenzenesulfonate In methyl cyclohexane at 50℃; for 1h;
2,3,5,6-tetrachloropyridine
2402-79-1

2,3,5,6-tetrachloropyridine

potassium picolinate
25108-36-5

potassium picolinate

diethyl phosphorochloridothioate
2524-04-1

diethyl phosphorochloridothioate

Chlorpyrifos
2921-88-2

Chlorpyrifos

Conditions
ConditionsYield
With dmap; potassium hydroxide In dichloromethane; water
Chlorpyrifos
2921-88-2

Chlorpyrifos

3,5,6-trichloropyridin-2 ol
6515-38-4

3,5,6-trichloropyridin-2 ol

Conditions
ConditionsYield
With potassium hydroxide In ethanol for 4h; Heating;91.7%
With potassium hydroxide In ethanol for 1h; Heating;90%
With water at 40℃; for 960h; Rate constant; Thermodynamic data; E(a); other natural water, pH = 8.0;
Chlorpyrifos
2921-88-2

Chlorpyrifos

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

Conditions
ConditionsYield
With sodium iodide In acetone at 45℃; for 5h;90%
Chlorpyrifos
2921-88-2

Chlorpyrifos

chlopyrifos oxon
5598-15-2

chlopyrifos oxon

Conditions
ConditionsYield
With dihydrogen peroxide In acetic acid for 3h; Irradiation;80%
With rat liver microsomes Enzyme kinetics; Further Variations:; Reaction partners; desulfuration; Enzymatic reaction;
With bromine In acetonitrile
Chlorpyrifos
2921-88-2

Chlorpyrifos

copper(II) choride dihydrate

copper(II) choride dihydrate

C9H11Cl3CuNO3PS(2+)

C9H11Cl3CuNO3PS(2+)

Conditions
ConditionsYield
In methanol at 110℃; for 48h; Autoclave; Green chemistry;41.95%
Chlorpyrifos
2921-88-2

Chlorpyrifos

zinc(II) chloride
7646-85-7

zinc(II) chloride

C9H11Cl3NO3PSZn(2+)

C9H11Cl3NO3PSZn(2+)

Conditions
ConditionsYield
In methanol at 110℃; for 48h; Autoclave; Green chemistry;26.19%
Chlorpyrifos
2921-88-2

Chlorpyrifos

cobalt(II) chloride hexahydrate

cobalt(II) chloride hexahydrate

C9H11Cl3CoNO3PS(2+)

C9H11Cl3CoNO3PS(2+)

Conditions
ConditionsYield
In methanol at 110℃; for 48h; Autoclave; Green chemistry;19.02%
Chlorpyrifos
2921-88-2

Chlorpyrifos

6-mercaptocaproic acid
17689-17-7

6-mercaptocaproic acid

6-[3,5-Dichloro-6-(diethoxy-thiophosphoryloxy)-pyridin-2-ylsulfanyl]-hexanoic acid

6-[3,5-Dichloro-6-(diethoxy-thiophosphoryloxy)-pyridin-2-ylsulfanyl]-hexanoic acid

Conditions
ConditionsYield
With potassium hydroxide In ethanol for 1h; Heating;17%
With potassium hydroxide 1.) EtOH, reflux, 2.) EtOH, reflux, 1 h; Yield given. Multistep reaction;
Chlorpyrifos
2921-88-2

Chlorpyrifos

manganese(II) chloride tetrahydrate

manganese(II) chloride tetrahydrate

C9H11Cl3MnNO3PS(2+)

C9H11Cl3MnNO3PS(2+)

Conditions
ConditionsYield
In methanol at 110℃; for 48h; Autoclave; Green chemistry;16.01%
Chlorpyrifos
2921-88-2

Chlorpyrifos

ethyl (3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphate

ethyl (3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphate

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 80 percent / 30 percent aq. H2O2 / acetic acid / 3 h / Irradiation
2: 85 percent / NaI / acetone / 5 h / 45 °C
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

3-(3,5-dichloro-6-hydroxy-2-pyridyl)thiohexanoic acid

3-(3,5-dichloro-6-hydroxy-2-pyridyl)thiohexanoic acid

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 1.) KOH / 1.) EtOH, reflux, 2.) EtOH, reflux, 1 h
2: 75 percent / 1M aq. NaOH / tetrahydrofuran / 1 h / Heating
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

A

2-amino-3-[(3,5-dichloro-6-hydroxypyridin-2-yl)thio]propanoic acid

2-amino-3-[(3,5-dichloro-6-hydroxypyridin-2-yl)thio]propanoic acid

B

2-amino-3-({3,5-dichloro-6-[(diethoxyphosphorothioyl)oxy]pyridin-2-yl}thio)propanoic acid

2-amino-3-({3,5-dichloro-6-[(diethoxyphosphorothioyl)oxy]pyridin-2-yl}thio)propanoic acid

C

2-amino-3-[(3,5-dichloro-6-{[ethoxy(hydroxy)phosphorothioyl]oxy}pyridin-2-yl)thio]propanoic acid

2-amino-3-[(3,5-dichloro-6-{[ethoxy(hydroxy)phosphorothioyl]oxy}pyridin-2-yl)thio]propanoic acid

D

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

Conditions
ConditionsYield
With sodium In ethanol at -78 - 20℃;
Chlorpyrifos
2921-88-2

Chlorpyrifos

sodium thiomethoxide
5188-07-8

sodium thiomethoxide

3,5-dichloro-6-(methylthio)pyridin-2-ol
870971-34-9

3,5-dichloro-6-(methylthio)pyridin-2-ol

Conditions
ConditionsYield
In N,N-dimethyl-formamide
methanol
67-56-1

methanol

Chlorpyrifos
2921-88-2

Chlorpyrifos

Thiophosphorsaeure-O,O-diethyl-O-methylester
15959-01-0

Thiophosphorsaeure-O,O-diethyl-O-methylester

Conditions
ConditionsYield
With perchloric acid; (S)-{2-[2-(4-tert-butyl)oxazolinyl]phenyl-C1,N}(trifluoromethylpyridine)(aqua)-palladium(II) triflate at 25℃; pH=10.8; Kinetics; aq. buffer;
Chlorpyrifos
2921-88-2

Chlorpyrifos

A

3,5,6-trichloropyridin-2 ol
6515-38-4

3,5,6-trichloropyridin-2 ol

B

O,O'-diethyl thiophosphoric acid
2465-65-8

O,O'-diethyl thiophosphoric acid

Conditions
ConditionsYield
With water
Chlorpyrifos
2921-88-2

Chlorpyrifos

A

3,5,6-trichloropyridin-2 ol
6515-38-4

3,5,6-trichloropyridin-2 ol

B

chlopyrifos oxon
5598-15-2

chlopyrifos oxon

C

phosphonic acid diethyl ester
762-04-9

phosphonic acid diethyl ester

Conditions
ConditionsYield
With titanium(IV) dioxide In water; acetonitrile at 25℃; for 0.5h; Concentration; Irradiation;
Chlorpyrifos
2921-88-2

Chlorpyrifos

phosphonic acid diethyl ester
762-04-9

phosphonic acid diethyl ester

Conditions
ConditionsYield
With titanium(IV) dioxide In water; acetonitrile at 25℃; for 1h; Concentration; Irradiation;
Chlorpyrifos
2921-88-2

Chlorpyrifos

A

3,5,6-trichloropyridin-2 ol
6515-38-4

3,5,6-trichloropyridin-2 ol

B

chlopyrifos oxon
5598-15-2

chlopyrifos oxon

C

O,O-dihydrogen phosphorothioite

O,O-dihydrogen phosphorothioite

D

H2O3P(1-)

H2O3P(1-)

E

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

O-ethyl O-(3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphorothioate

F

ethyl (3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphate

ethyl (3,5,6-trichloropyridin-2-yl)-O-hydrogenphosphate

G

3,5,6-trichloropyridin-2-yl dihydrogen phosphate

3,5,6-trichloropyridin-2-yl dihydrogen phosphate

H

O-(3,5,6-trichloropyridin-2-yl) O,O-dihydrogenphosphorothioate

O-(3,5,6-trichloropyridin-2-yl) O,O-dihydrogenphosphorothioate

Conditions
ConditionsYield
With sodium hydroxide at 25℃; pH=5.8; Kinetics; Catalytic behavior; UV-irradiation; Green chemistry;
Chlorpyrifos
2921-88-2

Chlorpyrifos

A

Sulfate
14808-79-8

Sulfate

B

Phosphate
14265-44-2

Phosphate

Conditions
ConditionsYield
With C26H16ClCuN3O3 In water at 20℃; for 18h; pH=7.0; Catalytic behavior; Kinetics; Mechanism; pH-value; Time; Temperature;
Chlorpyrifos
2921-88-2

Chlorpyrifos

2,3,5-trichloro-6-benzyloxypyridine

2,3,5-trichloro-6-benzyloxypyridine

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: potassium hydroxide / ethanol / 1 h / Reflux
2: sodium hydride / N,N-dimethyl-formamide / 18 h / 20 °C / Inert atmosphere
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

(2-carboxyethyl)thio-3,5-dichloro-6-benzyloxypyridine

(2-carboxyethyl)thio-3,5-dichloro-6-benzyloxypyridine

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: potassium hydroxide / ethanol / 1 h / Reflux
2: sodium hydride / N,N-dimethyl-formamide / 18 h / 20 °C / Inert atmosphere
3: potassium hydroxide / ethanol / 18 h / Reflux
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

3-(3,5-dichloro-6-hydroxy-2-pyridylthio)propanoic acid

3-(3,5-dichloro-6-hydroxy-2-pyridylthio)propanoic acid

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: potassium hydroxide / ethanol / 1 h / Reflux
2: sodium hydride / N,N-dimethyl-formamide / 18 h / 20 °C / Inert atmosphere
3: potassium hydroxide / ethanol / 18 h / Reflux
4: palladium 10% on activated carbon; hydrogen / ethanol / 6 h / 20 °C / 2280.15 Torr
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

triclopyr acid
55335-06-3

triclopyr acid

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: methanol; lithium hydroxide / tetrahydrofuran; water / 0.5 h
2: potassium iodide / N,N-dimethyl-formamide / 1 h / Reflux
3: sodium hydroxide; methanol / tetrahydrofuran; water / 20 °C
View Scheme
Chlorpyrifos
2921-88-2

Chlorpyrifos

3-mercaptopropionic acid
107-96-0

3-mercaptopropionic acid

A

3-[3,5-Dichloro-6-(diethoxy-thiophosphoryloxy)-pyridin-2-ylsulfanyl]-propionic acid

3-[3,5-Dichloro-6-(diethoxy-thiophosphoryloxy)-pyridin-2-ylsulfanyl]-propionic acid

B

3-(3,5-dichloro-6-hydroxy-2-pyridylthio)propanoic acid

3-(3,5-dichloro-6-hydroxy-2-pyridylthio)propanoic acid

Conditions
ConditionsYield
With potassium hydroxide In ethanol at 80℃; for 1.16667h; Overall yield = 83 percent; Overall yield = 0.68 g;

2921-88-2Relevant articles and documents

Reinvestigation of phase-transfer-catalyzed chlorpyrifos synthesis

Fakhraian,Moghimi,Ghadiri,Dehnavi,Sadeghi

, p. 680 - 684 (2004)

Production of chlorpyrifos via the phase-transfer-catalyzed reaction of 0,0-diethylphosphorochloridothioate and the sodium salt of 3,5,6- trichloropyridin-2-ol was reinvestigated. The formation of sulfotep (the major byproduct) and the yield are influence

Chlorpyrifos production method

-

Paragraph 0033-0050, (2018/05/01)

Provided is a chlorpyrifos production method. Trichloro-acetic chloride is used as a starting raw material, an intermediate 3,3,5,6-tetrachloro-4,5-dihydropyridine-2(3H)-ketone is synthesized throughaddition and cyclization reaction, and then chlorpyrifos is synthesized through alkaline hydrolysis, condensation reaction and one-pot process reaction. The 3,5,6-trichloropyridine-2-sodium phenolatefiltering link after alkaline hydrolysis reaction is omitted, the chlorpyrifos is synthesized through a one-pot process, and operation steps are simplified. A dual-solvent method is adopted for condensation reaction, hydrolysis of O,O-diethyl thiophosphoryl chloride and generation of sulfotep can be effectively inhibited, the content of the synthesized chlorpyrifos product is 97% or above, and thetotal yield is 83% or above. Produced wastewater is greatly decreased, the total wastewater discharging amount is reduced by about 50% compared with an existing process, and the chlorpyrifos production method is suitable for industrial production.

Concentrates of organophosphorous insecticides

-

, (2008/06/13)

A low volatile organic compound co-solvent system is disclosed for preparing emulsion concentrates of low melting organophosphorous insecticides wherein the bioefficacy of the insecticide active is significantly enhanced. The co-solvent system comprises a water-soluble ethoxylated fatty acid/rosin acid-nonionic surfactant composition.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2921-88-2