Welcome to LookChem.com Sign In|Join Free

CAS

  • or

30010-80-1

Post Buying Request

30010-80-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

30010-80-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 30010-80-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,0,0,1 and 0 respectively; the second part has 2 digits, 8 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 30010-80:
(7*3)+(6*0)+(5*0)+(4*1)+(3*0)+(2*8)+(1*0)=41
41 % 10 = 1
So 30010-80-1 is a valid CAS Registry Number.

30010-80-1Downstream Products

30010-80-1Relevant articles and documents

Use of kinetic isotope effects in mechanism studies. Isotope effects and element effects associated with Hydron-Transfer steps during alkoxide-promoted dehydrohalogenations

Koch, Heinz F.,Lodder, Gerrit,Koch, Judith G.,Bogdan, David J.,Brown, Geoffrey H.,Carlson, Carrie A.,Dean, Amy B.,Hage, Ronald,Han, Patrick,Hopman, Johan C. P.,James, Lisa A.,Knape, Petra M.,Roos, Eric C.,Sardina, Melissa L.,Sawyer, Rachael A.,Scott, Barbara O.,Testa III, Charles A.,Wickham, Steven D.

, p. 9965 - 9974 (2007/10/03)

The Arrhenius behavior of the primary kinetic isotope effect, (k(H)/k(D))(Obs) and (k(H)/k(T))(Obs), associated with the methanolic sodium methoxide-promoted dehydrohalogenations of m-ClC6H4C(i)HClCH2Cl (I), m-CF3C6H4C(i)-HClCH2Cl (II) and p-CF3C6H4C(i)HClCH2F (III) has been used to calculate the internal-return parameters, a = k(-1)/K(Elim)(X), in a two-step mechanism featuring a hydrogen-bonded carbanion. This carbanion partitions between returning the hydron to carbon, k(-1), and the loss of halide, K(Elm)(X). Isotope effects at 25°C for I, (k(H)/k(D))(Obs) = 3.40 and (k(H)/ k(T))(Obs) = 6.20, and II, (k(H)/k(D))(Obs) = 3.49 and (k(H)/k(T))(Obs) = 6.55, result in similar values for a: a(H) = 0.59, a(D) = 0.13-0.14 and a(T) = 0.07. Smaller values of (k(H)/k(D))(Obs) = 2.19 and (k(H)/k(T))(Obs) = 3.56 for III are due to more internal return [a(H) = 1.9, a(D) = 0.50, and a(T) = 0.28] associated with the dehydrofluorination reaction. Calculation of k1 ( k(Obs) [a + 1]) results in similar isotope effects for hydron transfer in these reactions: k1(H)/k1(D) = 4.74 and k1(H)/K1(T) = 9.20; II, k1(H)/k1(D) = 4.91 and k1(H)/k1(T) = 9.75; III, k1(H)/k1(D) = 4.75 and k1(H)/k1(T) = 9.17. Reactions of m-ClC6H4C(i)HBrCH2Br and m-ClC6H4C(i)HClCH2Br have very small amounts of internal return, a(H) = 0.05 and a(D) = 0.01, and (k(H)/k(D))(Obs) = 4.95 results in k1(H)/k1(D) = 5.11 The measured isotope effects are therefore due to differences in the amount of internal return and not in the symmetry of transition state structures for the hydron transfer, and the element effect, (k(HBr)/ k(HCl)) = 29, for m-ClC6H4CHClCH2X is mainly due to the hydron-transfer step, k1(HBr)/k1(HCl) = 19, and not the breaking of the C-X bend. The kinetic solvent isotope effects, k(MeOD)/k(MeOH) ~ 2.5, are consistent with three methanols of solvation lost prior to the hydron-transfer step. The energetics associated with desolvation of methoxide ion are part of the measured reaction energetics of these systems.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 30010-80-1