Welcome to LookChem.com Sign In|Join Free

CAS

  • or

317318-96-0

Post Buying Request

317318-96-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

317318-96-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 317318-96-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 3,1,7,3,1 and 8 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 317318-96:
(8*3)+(7*1)+(6*7)+(5*3)+(4*1)+(3*8)+(2*9)+(1*6)=140
140 % 10 = 0
So 317318-96-0 is a valid CAS Registry Number.
InChI:InChI=1/C12H10F3NOS/c1-7-10(6-17)18-11(16-7)8-2-4-9(5-3-8)12(13,14)15/h2-5,17H,6H2,1H3

317318-96-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name [4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl]methanol

1.2 Other means of identification

Product number -
Other names [4-methyl-2-(4-trifluoromethyl-phenyl)thiazole-5-yl]-methanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:317318-96-0 SDS

317318-96-0Downstream Products

317318-96-0Relevant articles and documents

Synthesis and Evaluation of PPARδAgonists That Promote Osteogenesis in a Human Mesenchymal Stem Cell Culture and in a Mouse Model of Human Osteoporosis

Kress, Brian J.,Kim, Dong Hyun,Mayo, Jared R.,Farris, Jeffery T.,Heck, Benjamin,Sarver, Jeffrey G.,Andy, Divya,Trendel, Jill A.,Heck, Bruce E.,Erhardt, Paul W.

, p. 6996 - 7032 (2021/05/29)

We synthesized a directed library of compounds to explore the structure-activity relationships of peroxisome proliferator-activated receptor δ(PPARδ) activation relative to mesenchymal stem cell (MSC) osteogenesis. Our scaffold used para-substituted cinnamic acids as a polar headgroup, a heteroatom and heterocycle core connecting units, and substituted phenyl groups for the lipophilic tail. Compounds were screened for their ability to increase osteogenesis in MSCs, and the most promising were examined for subunit specificity using a quantitative PPAR transactivation assay. Six compounds were selected for in vivo studies in an ovariectomized mouse model of human postmenopausal osteoporosis. Four compounds improved bone density in vivo, with two (12d and 31a) having activity comparable to that of GW0742, a well-studied PPARδ-selective agonist. 31a (2-methyl-4-[N-methyl-N-[5-methylene-4-methyl-2-[4-(trifluoromethyl)phenyl]thiazole]]aminocinnamic acid) had the highest selectivity for PPARδcompared to other subtypes, its selectivity far exceeding that of GW0742. Our results confirm that PPARδis a new drug target for possible treatment of osteoporosis via in situ manipulation of MSCs.

Design, synthesis and biological evaluation of novel thiazole-derivatives as mitochondrial targeting inhibitors of cancer cells

Dang, Xin,Lei, Shuwen,Luo, Shuhua,Hu, Yixin,Wang, Juntao,Zhang, Dongdong,Lu, Dan,Jiang, Faqin,Fu, Lei

, (2021/06/16)

Mitochondria are pivotal energy production sources for cells to maintain necessary metabolism activities. Targeting dysfunctional mitochondrial features has been a hotspot for mitochondrial-related disease researches. Investigation with cancerous mitochondrial metabolism is a continuing concern within tumor therapy. Herein, we set out to assess the anti-cancer activities of a novel family of TPP-thiazole derivatives based on our earlier research on mitochondrial targeting agents. Specifically, we designed and synthesized a series of TPP-thiazole derivatives and revealed by the MTT assay that most synthesized compounds effectively inhibited three cancer cell lines (HeLa, PC3 and MCF-7). After structure modifications, we explored the SAR relationships and identified the most promising compound R13 (IC50 of 5.52 μM) for further investigation. In the meantime, we performed ATP production assay to assess the selected compounds inhibitory effect on HeLa cells energy production. The results displayed the test compounds significantly restrained ATP production of cancer cells. Overall, we have designed and synthesized a series of compounds which exhibited significant cytotoxicity against cancer cells and effectively inhibited mitochondrial energy production.

ANALOGS OF PPARO AND 20-OH-PGE2, AND METHODS OF USING THE SAME

-

Paragraph 00129; 00130; 00143; 00144, (2014/10/04)

Analogs of PPAR5 and analogs of 20-OH-PGE2, which are PPAR5 agonists and 20-OH-PGE2 antagonists, respectively, and methods of using the same for inducing osteogenesis or chondrogenesis, are disclosed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 317318-96-0