328540-70-1Relevant articles and documents
From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors
Massari, Serena,Corona, Angela,Distinto, Simona,Desantis, Jenny,Caredda, Alessia,Sabatini, Stefano,Manfroni, Giuseppe,Felicetti, Tommaso,Cecchetti, Violetta,Pannecouque, Christophe,Maccioni, Elias,Tramontano, Enzo,Tabarrini, Oriana
, p. 55 - 74 (2018/10/31)
The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 μM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.
Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity
Desantis, Jenny,Nannetti, Giulio,Massari, Serena,Barreca, Maria Letizia,Manfroni, Giuseppe,Cecchetti, Violetta,Palù, Giorgio,Goracci, Laura,Loregian, Arianna,Tabarrini, Oriana
, p. 128 - 139 (2017/07/03)
With the aim to identify small molecules able to disrupt PA-PB1 subunits interaction of influenza virus (flu) RNA-dependent RNA polymerase, and based on previous structural and computational information, in this paper we have designed and synthesized a new series of cycloheptathiophene-3-carboxamide (cHTC) derivatives. Their biological evaluation led to highlight important structural insights along with new interesting compounds, such as the 2-hydroxybenzamido derivatives 29, 31, and 32, and the 4-aminophenyl derivative 54, which inhibited viral growth in the low micromolar range (EC50 = 0.18–1.2 μM) at no toxic concentrations (CC50 > 250 μM). This study permitted to obtain among the most potent anti-flu compounds within the PA-PB1 interaction inhibitors, confirming the cHTC scaffold as particularly suitable to achieve innovative anti-flu agents.