Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3311-73-7

Post Buying Request

3311-73-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3311-73-7 Usage

Physical State

Solid

Color

Bright Yellow

Crystalline Structure

Crystalline

Primary Use

Reagent in Organic Synthesis

Secondary Use

Precursor for Dyes and Pigments

Derivative of

Anthraquinone

Iodine Attachment

1 and 5 positions of the molecule

Application

Production of Vat Dyes

Dye Characteristics

Excellent Color Fastness, Resistance to Fading

Potential Use

Photodynamic Therapy for Cancer Treatment

Mechanism of Action

Generation of Reactive Oxygen Species upon Light Exposure

Toxicity

Toxic

Environmental Impact

Potential Environmental Impact

Regulatory Status

Strictly Regulated Use

Check Digit Verification of cas no

The CAS Registry Mumber 3311-73-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,3,1 and 1 respectively; the second part has 2 digits, 7 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 3311-73:
(6*3)+(5*3)+(4*1)+(3*1)+(2*7)+(1*3)=57
57 % 10 = 7
So 3311-73-7 is a valid CAS Registry Number.

3311-73-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,5-diiodoanthracene-9,10-dione

1.2 Other means of identification

Product number -
Other names 1,5-diiodo-9,10-anthraquinone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3311-73-7 SDS

3311-73-7Upstream product

3311-73-7Relevant articles and documents

Twofold C?H Activation Enables Synthesis of a Diazacoronene-Type Fluorophore with Near Infrared Emission Through Isosteric Replacement

Gre?ies, Steffen,Ito, Masato,Sakai, Mika,Osaki, Hiroshi,Kim, Ju Hyun,Gensch, Tobias,Daniliuc, Constantin,Ando, Naoki,Yamaguchi, Shigehiro,Glorius, Frank

, p. 2753 - 2759 (2021)

The synthesis and photophysical properties of a soluble amide-embedded coronene is reported. The key step in this synthesis is the twofold C?H activation of diazaperylene by a rhodium(III)Cp* catalyst. This unprecedented structural motif shows intense fluorescence in the near infrared region with a small Stokes shift and a distinct vibronic structure, which exhibits a slight extent of negative solvatochromism. Comparison of this compound with some relevant compounds revealed the importance of the amide incorporation in the peripheral concave region including an angular position to retain high aromaticity reflecting that of parent coronene. Treatment of this compound with Lewis acid B(C6F5)3 formed a bis-adduct, which exhibited enhanced aromaticity as a consequence of the increased double bond character of the amide C?N bonds.

Zinc-Ion-Stabilized Charge-Transfer Interactions Drive Self-Complementary or Complementary Molecular Recognition

Iseki, Shuta,Kishida, Sakura,Nonomura, Kohei,Ogata, Daiji,Yuasa, Junpei

supporting information, p. 15842 - 15851 (2020/10/18)

Here, we show that charge-transfer interactions determine whether donor and acceptor ditopic ligands will associate in a complementary or self-complementary fashion upon metal-ion clipping. Anthracene-based (9,10LD and 1,5LD) and anthraquinone-based (1,5LA) ditopic ligands containing two imidazole side arms as zinc coordination sites were designed. The 9,10LD and 1,5LA systems associated in a complementary fashion (LA/LD/LA) upon clipping by two zinc ions (Zn2+) to form an alternating donor-acceptor assembly [(9,10LD)(1,5LA)2-(Zn2+)2]. However, once the charge-transfer interactions were perturbed by subtle modifications of the imidazole side arms (9,10LD′(S) and 1,5LA′(S)), self-complementary association (LD′/LD′/LD′/LD′ and LA′/LA′/LA′/LA′) between the donor (9,10LD′(S)) and acceptor (1,5LA′(S)) ligands predominantly occurred to form homoassemblies [(9,10LD′(S))4-(Zn2+)2 and (1,5LA′(S))4-(Zn2+)2]. As in the case of a homochiral pair (9,10LD′(S) and 1,5LA′(S)), self-complementary association (narcissistic self-sorting) occurred in the Zn2+ assembly with heterochiral combinations of the donor and acceptor ligands (9,10LD′(S)/1,5LA′(R) and 9,10LD′(S)/1,5LA′(R)/1,5LA′(R)). Narcissistic self-sorting also took place between the positional isomer of the donor ligands (9,10LD and 1,5LD) to form individual homoligand assemblies [(9,10LD)4-(Zn2+)2 and (1,5LD)4-(Zn2+)2]. Conversely, statistical association took place in the Zn2L4 assembly process of an isomorphous pair of the donor and acceptor ligands (1,5LD and 1,5LA).

Intramolecular behaviors of anthryldicarbenic systems: Dibenzo[b,f]pentalene and, 1H,5H-dicyclobuta[de,kl]anthracene

Kendall,Shechter

, p. 6643 - 6649 (2007/10/03)

9,10-Bis[methoxy(trimethylsilyl)methyl]anthracenes (24), synthesized from 9,10-dilithioanthracene (26) and bromomethoxytrimethylsilylmethane (27, 2 equiv), decompose (550-650 °C/10-3 mmHg) carbenically to dibenzo[b,f]pentalene (28, >48%). 9,10-Anthryldicarbenes 39 or their equivalents convert to pentalene 28 rather than di-peri-cyclobutanthracenes 30 and 31, benzobiphenylene 32, or extended rearrangement products 33-38. Formation of 28 from 24 raises questions with respect to the behavior of 1,3,4,6-cycloheptatetraenyl-1-carbenes 49, 2,4,5,7-cyclooctatetraenylidene 51, 2,5,7-cyclooctatriene-1,4-diylidene 52, 1,2,4,5,7-cyclooctapentaene 53, and bicyclo[4.1.0]heptatrienyl-1-carbenes 54 and to carbon-skeleton and hydrogen rearrangements of anthryldicarbenes 39 and/or their equivalents at various temperatures. 1,5-Bis[methoxy(trimethylsilyl)methyl]anthracenes (25), prepared from 1,5-diiodoanthracene (63) and methoxytrimethylsilylmethylzinc bromide (57, 2 equiv) as catalyzed by PdCl2(PPh3)2, yield the di-peri-carbenic reaction product 1H,5H-dicyclobuta[de,kl]anthracene (30, >40%) on pyrolysis at 550-650 °C/10-3 mmHg. Proof of structure and various aspects of the mechanisms of formation of 30 are discussed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3311-73-7