350-03-8Relevant articles and documents
Minisci-Type Alkylation of N-Heteroarenes by N-(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light
Kyne, Sara Helen,Li, Jiacheng,Siang Tan, Suan,Wai Hong Chan, Philip
supporting information, (2022/01/11)
A synthetic method that enables the Hantzsch ester-mediated Minisci-type C2-alkylation of quinolines, isoquinolines and pyridines by N-(acyloxy)phthalimide esters (NHPI) under blue LED (light emitting diode) light (456 nm) is described. Achieved under mild reaction conditions at room temperature, the metal-free synthetic protocol was shown to be applicable to primary, secondary and tertiary NHPIs to give the alkylated N-heterocyclic products in yields of 21–99%. On introducing a chiral phosphoric acid, an asymmetric version of the reaction was also realised and provided product enantiomeric excess (ee) values of 53–99%. The reaction mechanism was delineated to involve excitation of an electron-donor acceptor (EDA) complex, formed from weak electrostatic interactions between the Hantzsch ester and NHPI, which generates the posited radical species of the redox active ester that undergoes addition to the N-heterocycle.
Micellar effects on kinetics and mechanism of Vilsmeier–Haack formylation and acetylation with Pyridines
Alyami, Bandar A.,Iqubal, S. M. Shakeel,Khan, Aejaz Abdullatif,Mohammed, Tasneem
, (2022/01/19)
An efficient preparation of Vilsmeier–Haack formylated and acetylated derivatives with pyridine and substituted pyridines has been developed by employing micelles as catalyst. Their kinetic study reveals a phenomenal rate enhancement in anionic SDS, cationic CTAB, and nonionic TX-100 micellar media. The Vilsmeier–Haack reaction follows second order kinetics. Piszkiewicz’s co-operativity model was used to interpret the results in micellar media. The observed activation parameters ΔH and ΔS values were calculated from Eyring’s plots. The main features of this study were easy process, mild reaction conditions and readily available reagents. Graphical abstract: [Figure not available: see fulltext.].
Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds
Li, Zhibin,Zhang, Yan,Li, Kuiliang,Zhou, Zhenghong,Zha, Zhenggen,Wang, Zhiyong
, p. 2134 - 2141 (2021/09/29)
A selective electrochemical oxidation was developed under mild condition. Various mono-carbonyl and multi-carbonyl compounds can be prepared from different aromatic hydrocarbons with moderate to excellent yield and selectivity by virtue of this electrochemical oxidation. The produced carbonyl compounds can be further transformed into α-ketoamides, homoallylic alcohols and oximes in a one-pot reaction. In particular, a series of α-ketoamides were prepared in a one-pot continuous electrolysis. Mechanistic studies showed that 2,2,2-trifluoroethan-1-ol (TFE) can interact with catalyst species and generate the corresponding hydrogen-bonding complex to enhance the electrochemical oxidation performance. [Figure not available: see fulltext.]
Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls
Li, Xue,Bai, Fang,Liu, Chaogan,Ma, Xiaowei,Gu, Chengzhi,Dai, Bin
supporting information, p. 7445 - 7449 (2021/10/02)
An efficient electrochemical method for benzylic C(sp3)-H bond oxidation has been developed. A variety of methylarenes, methylheteroarenes, and benzylic (hetero)methylenes could be converted into the desired aryl aldehydes and aryl ketones in moderate to excellent yields in an undivided cell, using O2 as the oxygen source and lutidinium perchlorate as an electrolyte. On the basis of cyclic voltammetry studies, 18O labeling experiments, and radical trapping experiments, a possible single-electron transfer mechanism has been proposed for the electrooxidation reaction.
Visible light mediated selective oxidation of alcohols and oxidative dehydrogenation of N-heterocycles using scalable and reusable La-doped NiWO4nanoparticles
Abinaya, R.,Balasubramaniam, K. K.,Baskar, B.,Divya, P.,Mani Rahulan, K.,Rahman, Abdul,Sridhar, R.,Srinath, S.
, p. 5990 - 6007 (2021/08/24)
Visible light-mediated selective and efficient oxidation of various primary/secondary benzyl alcohols to aldehydes/ketones and oxidative dehydrogenation (ODH) of partially saturated heterocycles using a scalable and reusable heterogeneous photoredox catalyst in aqueous medium are described. A systematic study led to a selective synthesis of aldehydes under an argon atmosphere while the ODH of partially saturated heterocycles under an oxygen atmosphere resulted in very good to excellent yields. The methodology is atom economical and exhibits excellent tolerance towards various functional groups, and broad substrate scope. Furthermore, a one-pot procedure was developed for the sequential oxidation of benzyl alcohols and heteroaryl carbinols followed by the Pictet-Spengler cyclization and then aromatization to obtain the β-carbolines in high isolated yields. This methodology was found to be suitable for scale up and reusability. To the best of our knowledge, this is the first report on the oxidation of structurally diverse aryl carbinols and ODH of partially saturated N-heterocycles using a recyclable and heterogeneous photoredox catalyst under environmentally friendly conditions.
The dehydrogenative oxidation of aryl methanols using an oxygen bridged [Cu-O-Se] bimetallic catalyst
Choudhury, Prabhupada,Behera, Pradyota Kumar,Bisoyi, Tanmayee,Sahu, Santosh Kumar,Sahu, Rashmi Ranjan,Prusty, Smruti Ranjita,Stitgen, Abigail,Scanlon, Joseph,Kar, Manoranjan,Rout, Laxmidhar
supporting information, p. 5775 - 5779 (2021/04/12)
Herein, we report a new protocol for the dehydrogenative oxidation of aryl methanols using the cheap and commercially available catalyst CuSeO3·2H2O. Oxygen-bridged [Cu-O-Se] bimetallic catalysts are not only less expensive than other catalysts used for the dehydrogenative oxidation of aryl alcohols, but they are also effective under mild conditions and at low concentrations. The title reaction proceeds with a variety of aromatic and heteroaromatic methanol examples, obtaining the corresponding carbonyls in high yields. This is the first example using an oxygen-bridged copper-based bimetallic catalyst [Cu-O-Se] for dehydrogenative benzylic oxidation. Computational DFT studies reveal simultaneous H-transfer and Cu-O bond breaking, with a transition-state barrier height of 29.3 kcal mol?1
Preparation and Degradation of Rhodium and Iridium Diolefin Catalysts for the Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols
Buil, Mariá L.,Collado, Alba,Esteruelas, Miguel A.,G? mez-Gallego, Mar,Izquierdo, Susana,Nicasio, Antonio I.,Onìate, Enrique,Sierra, Miguel A.
, p. 989 - 1003 (2021/05/04)
Rhodium and iridium diolefin catalysts for the acceptorless and base-free dehydrogenation of secondary alcohols have been prepared, and their degradation has been investigated, during the study of the reactivity of the dimers [M(μ-Cl)(I4-C8H12)]2 (M = Rh (1), Ir (2)) and [M(μ-OH)(I4-C8H12)]2 (M = Rh (3), Ir (4)) with 1,3-bis(6′-methyl-2′-pyridylimino)isoindoline (HBMePHI). Complex 1 reacts with HBMePHI, in dichloromethane, to afford equilibrium mixtures of 1, the mononuclear derivative RhCl(I4-C8H12){κ1-Npy-(HBMePHI)} (5), and the binuclear species [RhCl(I4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (6). Under the same conditions, complex 2 affords the iridium counterparts IrCl(I4-C8H12){κ1-Npy-(HBMePHI)} (7) and [IrCl(I4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (8). In contrast to chloride, one of the hydroxide groups of 3 and 4 promotes the deprotonation of HBMePHI to give [M(I4-C8H12)]2(μ-OH){μ-Npy,Niso-(BMePHI)} (M = Rh (9), Ir (10)), which are efficient precatalysts for the acceptorless and base-free dehydrogenation of secondary alcohols. In the presence of KOtBu, the [BMePHI]- ligand undergoes three different degradations: Alcoholysis of an exocyclic isoindoline-N double bond, alcoholysis of a pyridyl-N bond, and opening of the five-membered ring of the isoindoline core.
Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents
An, Ju Hyeon,Kim, Kyu Dong,Lee, Jun Hee
supporting information, p. 2876 - 2894 (2021/02/01)
Herein, we disclose a highly chemoselective room-temperature deoxygenation method applicable to various functionalized N-heterocyclic N-oxides via visible light-mediated metallaphotoredox catalysis using Hantzsch esters as the sole stoichiometric reductant. Despite the feasibility of catalyst-free conditions, most of these deoxygenations can be completed within a few minutes using only a tiny amount of a catalyst. This technology also allows for multigram-scale reactions even with an extremely low catalyst loading of 0.01 mol %. The scope of this scalable and operationally convenient protocol encompasses a wide range of functional groups, such as amides, carbamates, esters, ketones, nitrile groups, nitro groups, and halogens, which provide access to the corresponding deoxygenated N-heterocycles in good to excellent yields (an average of an 86.8% yield for a total of 45 examples).
Photo-induced oxidative cleavage of C-C double bonds for the synthesis of biaryl methanoneviaCeCl3catalysis
Xie, Pan,Xue, Cheng,Du, Dongdong,Shi, SanShan
supporting information, p. 6781 - 6785 (2021/08/20)
A Ce-catalyzed strategy is developed to produce biaryl methanonesviaphotooxidative cleavage of C-C double bonds at room temperature. This reaction is performed under air and demonstrates high activity as well as functional group tolerance. A synergistic Ce/ROH catalytic mechanism is also proposed based on the experimental observations. This protocol should be the first successful Ce-catalyzed photooxidation reaction of olefins with air as the oxidant, which would provide inspiration for the development of novel Ce-catalyzed photochemical synthesis processes.