Welcome to LookChem.com Sign In|Join Free

CAS

  • or

35704-19-9

Post Buying Request

35704-19-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

35704-19-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 35704-19-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,5,7,0 and 4 respectively; the second part has 2 digits, 1 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 35704-19:
(7*3)+(6*5)+(5*7)+(4*0)+(3*4)+(2*1)+(1*9)=109
109 % 10 = 9
So 35704-19-9 is a valid CAS Registry Number.
InChI:InChI=1/C9H8N2O/c1-7(12)11-9-4-2-8(6-10)3-5-9/h2-5H,1H3,(H,11,12)

35704-19-9 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A14941)  4'-Cyanoacetanilide, 98%   

  • 35704-19-9

  • 5g

  • 270.0CNY

  • Detail
  • Alfa Aesar

  • (A14941)  4'-Cyanoacetanilide, 98%   

  • 35704-19-9

  • 25g

  • 1180.0CNY

  • Detail

35704-19-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(4-cyanophenyl)acetamide

1.2 Other means of identification

Product number -
Other names 4-acetaminobenzonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:35704-19-9 SDS

35704-19-9Relevant articles and documents

Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα

Dolenc, Marija Sollner,Loboda, Kaja Bergant,Perdih, Andrej,Valjavec, Katja,Wolber, Gerhard,?tampar, Martina,?egura, Bojana,Filipi?, Metka

, (2020)

Cancer constitutes a group of diseases linked to abnormal cell growth that can potentially spread to other parts of the body and is one of the most common causes of death. The molecular motors - DNA topoisomerases - that enable topological changes of the DNA molecule are one of the most established targets of cancer therapies. Due to known limitations of established topo II poisons such as cardiotoxicity, induction of secondary malignancies and recognized cancer cell resistance, an emerging group of catalytic topo II inhibitors attempts to circumvent these challenges. Currently, this approach comprises several subgroups of mechanistically diverse inhibitors, one of which are compounds that act by binding to their ATPase domain. In this study we have designed, synthesized and characterized a new series of 3,5-substituted 1,2,4-oxadiazoles that act as catalytic inhibitors of human topo IIα. The introduction of the substituted rigid substitutions on the oxadiazole backbone was intended to enhance the interactions with the ATP binding site. In the inhibition assays selected compounds revealed a new class of catalytic inhibitors targeting this molecular motor and showed binding to the isolated topo IIα ATPase domain. The predicted inhibitor binding geometries were evaluated in molecular dynamics simulations and subsequently dynophore models were derived, which provided a deeper insight into molecular recognition with its macromolecular target. Selected compounds also displayed in vitro cytotoxicity on the investigated MCF-7 cancer cell line and did not induce double-strand breaks (DSB), thus displaying a mechanism of action diverse from the topo II poisons also on the cellular level. The substituted oxadiazoles thus comprise a chemical class of interesting compounds that are synthetically fully amenable for further optimization to anticancer drugs.

Ethyl 2-Cyano-2-(2-nitrobenzenesulfonyloxyimino) Acetate (ortho-NosylOXY)-Mediated Double Beckmann Rearrangement of Ketoximes under Microwave Irradiation: A Mechanistic Perception

Dev, Dharm,Kalita, Tapasi,Mondal, Tanmay,Mandal, Bhubaneswar

, p. 1427 - 1435 (2021/01/04)

A method for Beckmann rearrangement using ethyl 2-cyano-2-(2-nitrobenzenesulfonyloxyimino) acetate (o-NosylOXY) under microwave irradiation is reported. Ketoximes (19 examples) are converted to the corresponding amides/lactams with 69–97% yields in ~10 minutes without any Lewis acid or co-catalyst. This is an example of halogen-free organocatalytic Beckmann rearrangement. Nuclear magnetic resonance (NMR)- and high-resolution mass spectrometry (HRMS)-based detailed mechanistic investigation suggest that o-NosylOXY acts as an initiator. Such initiators are reported before based on density functional theory (DFT) calculations. However, we report here the HRMS signatures of two transient intermediates, the nitrilium ion and the nitrilium ion's dimeric species. Rigorous NMR-based investigation of the reaction mechanism is performed. Our results indicate that the reported Beckmann rearrangement proceeds via two consecutive rearrangements. (Figure presented.).

Efficient nitriding reagent and application thereof

-

Paragraph 0215-0218, (2021/03/31)

The invention discloses an efficient nitriding reagent and application thereof, wherein the nitriding reagent comprises nitrogen oxide, an active agent, a reducing agent and an organic solvent. By applying the nitriding reagent, nitrogen-containing compounds such as amide, nitrile and the like can be produced, and the method is simple in condition, low in waste discharge amount and simple in reaction equipment.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 35704-19-9