Welcome to LookChem.com Sign In|Join Free

CAS

  • or

37578-06-6

Post Buying Request

37578-06-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

37578-06-6 Usage

Chemical Properties

Off-white solid

Check Digit Verification of cas no

The CAS Registry Mumber 37578-06-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,7,5,7 and 8 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 37578-06:
(7*3)+(6*7)+(5*5)+(4*7)+(3*8)+(2*0)+(1*6)=146
146 % 10 = 6
So 37578-06-6 is a valid CAS Registry Number.
InChI:InChI=1/C9H11N3S/c1-12-3-2-6-7(4-10)9(11)13-8(6)5-12/h2-3,5,11H2,1H3/p+1

37578-06-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-amino-6-methyl-5,7-dihydro-4H-thieno[2,3-c]pyridine-3-carbonitrile

1.2 Other means of identification

Product number -
Other names 2-amino-3-cyano-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:37578-06-6 SDS

37578-06-6Relevant articles and documents

Novel tetrahydrobenzo[b]thiophen-2-yl)urea derivatives as novel α-glucosidase inhibitors: Synthesis, kinetics study, molecular docking, and in vivo anti-hyperglycemic evaluation

Xie, Hong-Xu,Zhang, Juan,Li, Yue,Zhang, Jin-He,Liu, Shan-Kui,Zhang, Jie,Zheng, Hua,Hao, Gui-Zhou,Zhu, Kong-Kai,Jiang, Cheng-Shi

, (2021/08/19)

α-Glucosidase inhibitors, which can inhibit the digestion of carbohydrates into glucose, are one of important groups of anti-type 2 diabetic drugs. In the present study, we report our effort on the discovery and optimization of α-glucosidase inhibitors with tetrahydrobenzo[b]thiophen-2-yl)urea core. Screening of an in-house library revealed a moderated α-glucosidase inhibitors, 5a, and then the following structural optimization was performed to obtain more efficient derivatives. Most of these derivatives showed increased inhibitory activity against α-glucosidase than the parental compound 5a (IC50 of 26.71 ± 1.80 μM) and the positive control acarbose (IC50 of 258.53 ± 1.27 μM). Among them, compounds 8r (IC50 = 0.59 ± 0.02 μM) and 8s (IC50 = 0.65 ± 0.03 μM) were the most potent inhibitors, and showed selectivity over α-amylase. The direct binding of both compounds with α-glucosidase was confirmed by fluorescence quenching experiments. Kinetics study revealed that these compounds were non-competitive inhibitors, which was consistent with the molecular docking results that compounds 8r and 8s showed high preference to bind to the allosteric site instead of the active site of α-glucosidase. In addition, compounds 8r and 8s were not toxic (IC50 > 100 μM) towards LO2 and HepG2 cells. Finally, the in vivo anti-hyperglycaemic activity assay results indicated that compounds 8r could significantly decrease the level of plasma glucose and improve glucose tolerance in SD rats treated with sucrose. The present study provided the tetrahydrobenzo[b]thiophen-2-yl)urea chemotype for developing novel α-glucosidase inhibitors against type 2 diabetes.

3- and 6-Substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists

Aurelio, Luigi,Valant, Celine,Figler, Heidi,Flynn, Bernard L.,Linden, Joel,Sexton, Patrick M.,Christopoulos, Arthur,Scammells, Peter J.

experimental part, p. 7353 - 7361 (2010/03/03)

A series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were prepared and evaluated as potential allosteric modulators at the A1 adenosine receptor. The structure-activity relationships of the 3- and 6-positions of a series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were explored. Despite finding that 3- and 6-substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines possess the ability to recognize an allosteric site on the agonist-occupied A1AR at relatively high concentrations, the structural modifications we have performed on this scaffold favor the expression of orthosteric antagonist properties over allosteric properties. This research has identified 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as novel class of orthosteric antagonist of the A1AR and highlighted the close relationship between structural elements governing allosteric modulation and orthosteric antagonism of agonist function at the A1AR.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 37578-06-6