3788-56-5Relevant articles and documents
Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations
Mukhtarova, Lucia S.,Mukhitova, Fakhima K.,Gogolev, Yuri V.,Grechkin, Alexander N.
, p. 356 - 364 (2011)
The profiles of non-volatile oxylipins of pea (Pisum sativum) seedlings were examined by gas chromatography-mass spectrometry after in vitro incubation with α-linolenic acid. The 13-lipoxygenase/hydroperoxide lyase (HPL) products were predominant in the leaves, while the roots possess both 13- and 9-HPL products. Allene oxide synthase (AOS) and divinyl ether synthase (DES) products were not detected in the leaves or in the roots of any age. The HPL cascade produces a diversity of oxylipins, including the compounds (2E)-4-hydroxy-traumatic, (10E)-9,12-dihydroxy-10-dodecenoic and 9,12-dihydroxydodecanoic acids, as well as (2E)-4-hydroxy-2-nonenoic acid, which has not yet been detected in plants. Oxylipin patterns were altered by infection, water deficit, as well as by plant age. Infection caused the specific strong accumulation of azelaic (nonane-1,9-dioic) acid in the leaves. The azelaic acid content in the aged (14 and 18 day-old) leaves was significantly higher than in the younger leaves. Water deficit induced the accumulation of (2E)-4-hydroxy-2-nonenoic acid and (2E)-traumatic acid in the roots. Results demonstrate that: (1) the HPL cascade is the predominant branch of the lipoxygenase pathway in pea seedlings; (2) the HPL products may have the regulatory role both in growth control and adaptation.
Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity
Zhang, Guang-Xiang,You, Zhi-Neng,Yu, Jia-Mei,Liu, Yuan-Yang,Pan, Jiang,Xu, Jian-He,Li, Chun-Xiu
, p. 1190 - 1195 (2021)
Baeyer-Villiger monooxygenases (BVMOs) are remarkable biocatalysts for the Baeyer-Villiger oxidation of ketones to generate esters or lactones. The regioselectivity of BVMOs is essential for determining the ratio of the two regioisomeric products (“normal” and “abnormal”) when catalyzing asymmetric ketone substrates. Starting from a known normal-preferring BVMO sequence from Pseudomonas putida KT2440 (PpBVMO), a novel BVMO from Gordonia sihwensis (GsBVMO) with higher normal regioselectivity (up to 97/3) was identified. Furthermore, protein engineering increased the specificity constant (kcat/KM) 8.9-fold to 484 s?1 mM?1 for 10-ketostearic acid derived from oleic acid. Consequently, by using the variant GsBVMOC308L as an efficient biocatalyst, 10-ketostearic acid was efficiently transformed into 9-(nonanoyloxy)nonanoic acid, with a space-time yield of 60.5 g L?1 d?1. This study showed that the mutant with higher regioselectivity and catalytic efficiency could be applied to prepare medium-chain ω-hydroxy fatty acids through biotransformation of long-chain aliphatic keto acids derived from renewable plant oils.
PCSK9 ANTAGONIST COMPOUNDS
-
Page/Page column 72, (2021/03/05)
Disclosed are compounds of Formula (A), or a pharmaceutically acceptable salt thereof: where A, X, R1, and R2 are as defined herein, which compounds have properties for antagonizing PCSK9. Also described are pharmaceutical formulations comprising the compounds of Formula (I) or their salts, and methods of treating cardiovascular disease and conditions related to PCSK9 activity, e.g. atherosclerosis, hypercholesterolemia, coronary heart disease, metabolic syndrome, acute coronary syndrome, or related cardiovascular disease and cardiometabolic conditions.
PCSK9 ANTAGONIST COMPOUNDS
-
Page/Page column 80-81, (2021/06/26)
Disclosed are compounds of Formula (I), or a pharmaceutically acceptable salt thereof: (I) wherein A, A1, A2, R1, R2 and R3 are as defined herein, which compounds have properties for antagonizing PCSK9. Also described are pharmaceutical formulations comprising the compounds of Formula I or their salts, and methods of treating cardiovascular disease and conditions related to PCSK9 activity, e.g. atherosclerosis, hypercholesterolemia, coronary heart disease, metabolic syndrome, acute coronary syndrome, or related cardiovascular disease and cardiometabolic conditions.
The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis
Gorina, Svetlana S.,Grechkin, Alexander N.,Iljina, Tatiana M.,Mukhtarova, Lucia S.,Smirnova, Elena O.,Toporkova, Yana Y.
, (2020/09/16)
The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α?linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α?linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.
Novel insights into oxidation of fatty acids and fatty alcohols by cytochrome P450 monooxygenase CYP4B1
Thesseling, Florian A.,Hutter, Michael C.,Wiek, Constanze,Kowalski, John P.,Rettie, Allan E.,Girhard, Marco
, (2019/12/12)
CYP4B1 is an enigmatic mammalian cytochrome P450 monooxygenase acting at the interface between xenobiotic and endobiotic metabolism. A prominent CYP4B1 substrate is the furan pro-toxin 4-ipomeanol (IPO). Our recent investigation on metabolism of IPO related compounds that maintain the furan functionality of IPO while replacing its alcohol group with alkyl chains of varying structure and length revealed that, in addition to cytotoxic reactive metabolite formation (resulting from furan activation) non-cytotoxic ω-hydroxylation at the alkyl chain can also occur. We hypothesized that substrate reorientations may happen in the active site of CYP4B1. These findings prompted us to re-investigate oxidation of unsaturated fatty acids and fatty alcohols with C9–C16 carbon chain length by CYP4B1. Strikingly, we found that besides the previously reported ω- and ω-1-hydroxylations, CYP4B1 is also capable of α-, β-, γ-, and δ-fatty acid hydroxylation. In contrast, fatty alcohols of the same chain length are exclusively hydroxylated at ω, ω-1, and ω-2 positions. Docking results for the corresponding CYP4B1-substrate complexes revealed that fatty acids can adopt U-shaped bonding conformations, such that carbon atoms in both arms may approach the heme-iron. Quantum chemical estimates of activation energies of the hydrogen radical abstraction by the reactive compound 1 as well as electron densities of the substrate orbitals led to the conclusion that fatty acid and fatty alcohol oxidations by CYP4B1 are kinetically controlled reactions.
Allene Oxide Synthase Pathway in Cereal Roots: Detection of Novel Oxylipin Graminoxins
Grechkin, Alexander N.,Ogorodnikova, Anna V.,Egorova, Alevtina M.,Mukhitova, Fakhima K.,Ilyina, Tatiana M.,Khairutdinov, Bulat I.
, p. 336 - 343 (2018/06/04)
Young roots of wheat, barley, and sorghum, as well as methyl jasmonate pretreated rice seedlings, undergo an unprecedented allene oxide synthase pathway targeted to previously unknown oxylipins 1–3. These Favorskii-type products, (4Z)-2-pentyl-4-tridecene-1,13-dioic acid (1), (2′Z)-2-(2′-octenyl)-decane-1,10-dioic acid (2), and (2′Z,5′Z)-2-(2′,5′-octadienyl)-decane-1,10-dioic acid (3), have a carboxy function at the side chain, as revealed by their MS and NMR spectral data. Compounds 1–3 were the major oxylipins detected, along with the related α-ketols. Products 1–3 were biosynthesized from (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid, (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD), and (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoic acid, respectively, via the corresponding allene oxides and cyclopropanones. The data indicate that conversion of the allene oxide into the cyclopropanone is controlled by soluble cyclase. The short-lived cyclopropanones are hydrolyzed to products 1–3. The collective name “graminoxins” has been ascribed to oxylipins 1–3.
USES OF VANADIUM TO OXIDIZE ALDEHYDES AND OZONIDES
-
Paragraph 00055-00057, (2018/04/13)
The present invention relates to uses of vanadium to convert aldehydes and ozonides into their respective acids and/or ketones. More particularly, this invention relates to the oxidative work-ups following ozonolysis using vanadium, using vanadium during ozonolysis, and using vanadium to oxidize aldehydes in general. The invention also relates to methods comprising the ozonolysis of oleyl alcohol in the presence of either an acid or an alcohol.
Simultaneous Enzyme/Whole-Cell Biotransformation of C18 Ricinoleic Acid into (R)-3-Hydroxynonanoic Acid, 9-Hydroxynonanoic Acid, and 1,9-Nonanedioic Acid
Cha, Hee-Jeong,Seo, Eun-Ji,Song, Ji-Won,Jo, Hye-Jin,Kumar, Akula Ravi,Park, Jin-Byung
supporting information, p. 696 - 703 (2017/12/26)
Regiospecific oxyfunctionalization of renewable long chain fatty acids into industrially relevant C9 carboxylic acids has been investigated. One example was biocatalytic transformation of 10,12-dihydroxyoctadecanoic acid, which was produced from ricinoleic acid ((9Z,12R)-12-hydroxyoctadec-9-enoic acid) by a fatty acid double bond hydratase, into (R)-3-hydroxynonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid with a high conversion yield of ca. 70%. The biotransformation was driven by enzyme/whole-cell biocatalysts, consisting of the esterase of Pseudomonas fluorescens and the recombinant Escherichia coli expressing the secondary alcohol dehydrogenase of Micrococcus luteus, the Baeyer-Villiger monooxygenase of Pseudomonas putida KT2440 and the primary alcohol/aldehyde dehydrogenases of Acinetobacter sp. NCIMB9871. The high conversion yields and the high product formation rates over 20 U/g dry cells with insoluble reactants indicated that various (poly-hydroxy) fatty acids could be converted into multi-functional products via the simultaneous enzyme/whole-cell biotransformations. This study will contribute to the enzyme-based functionalization of hydrophobic substances. (Figure presented.).
FLOUROALKYL, FLOUROALKOXY, PHENOXY, HETEROARYLOXY, ALKOXY, AND AMINE 1,4-BENZOQUINONE DERIVATIVES FOR TREATMENT OF OXIDATIVE STRESS DISORDERS
-
Paragraph 0131; 0312, (2017/07/14)
Disclosed herein are compounds and methods of using such compounds for treating or suppressing oxidative stress disorders, including mitochondrial disorders, impaired energy processing disorders, neurodegenerative diseases and diseases of aging, or for modulating one or more energy biomarkers, normalizing one or more energy biomarkers, or enhancing one or more energy biomarkers, wherein the compounds are tocopherol quinone derivatives. Further disclosed are compounds, compositions, and methods for treatment of, or prophylaxis against, radiation exposure.