Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4275-43-8

Post Buying Request

4275-43-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4275-43-8 Usage

Synthesis Reference(s)

The Journal of Organic Chemistry, 30, p. 2877, 1965 DOI: 10.1021/jo01020a001

Check Digit Verification of cas no

The CAS Registry Mumber 4275-43-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,2,7 and 5 respectively; the second part has 2 digits, 4 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 4275-43:
(6*4)+(5*2)+(4*7)+(3*5)+(2*4)+(1*3)=88
88 % 10 = 8
So 4275-43-8 is a valid CAS Registry Number.
InChI:InChI=1/C15H17N.ClH/c16-15(11-13-7-3-1-4-8-13)12-14-9-5-2-6-10-14;/h1-10,15H,11-12,16H2;1H

4275-43-8Relevant articles and documents

General and selective synthesis of primary amines using Ni-based homogeneous catalysts

Beller, Matthias,Chandrashekhar, Vishwas G.,Jagadeesh, Rajenahally V.,Jiao, Haijun,Murugesan, Kathiravan,Wei, Zhihong

, p. 4332 - 4339 (2020/05/18)

The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step.

ARYL, HETEROARY, AND HETEROCYCLIC PHARMACEUTICAL COMPOUNDS FOR TREATMENT OF MEDICAL DISORDERS

-

Page/Page column 715; 716, (2018/09/21)

Complement Factor D inhibitors, pharmaceutical compositions, and uses thereof, as well as processes for their manufacture are provided. The compounds provided include Formula I, Formula II, Formula III, Formula IV, and Formula V, or a pharmaceutically acceptable salt, prodrug, isotopic analog, N-oxide, or isolated isomer thereof, optionally in a pharmaceutically acceptable composition. The inhibitors described herein target Factor D and inhibit or regulate the complement cascade.

Total synthesis of (-)-platensimycin by advancing oxocarbenium- and iminium-mediated catalytic methods

Eey, Stanley T.-C.,Lear, Martin J.

, p. 11556 - 11573 (2015/01/16)

(-)-Platensimycin is a potent inhibitor of fatty acid synthase that holds promise in the treatment of metabolic disorders (e.g., diabetes and "fatty liver") and pathogenic infections (e.g., those caused by drug-resistant bacteria). Herein, we describe its total synthesis through a four-step preparation of the aromatic amine fragment and an improved stereocontrolled assembly of the ketolide fragment, (-)-platensic acid. Key synthetic advances include 1) a modified Lieben haloform reaction to directly convert an aryl methyl ketone into its methyl ester within 30 seconds, 2) an experimentally improved dialkylation protocol to form platensic acid, 3) a sterically controlled chemo- and diastereoselective organocatalytic conjugate reduction of a spiro-cyclized cyclohexadienone by using the trifluoroacetic acid salt of α-amino di-tert-butyl malonate, 4) a tetrabutylammonium fluoride promoted spiro-alkylative para dearomatization of a free phenol to assemble the cagelike ketolide core with the moderate leaving-group ability of an early tosylate intermediate, and 5) a bismuth(III)-catalyzed Friedel-Crafts cyclization of a free lactol, with LiClO4 as an additive to liberate a more active oxocarbenium perchlorate species and suppress the Lewis basicity of the sulfonyloxy group. The longest linear sequence is 21 steps with an overall yield of 3.8% from commercially available eugenol. Relay tactics: The stereocontrolled assembly of the potent antibiotic (-)-platensimycin in 21 steps and 3.8% yield from eugenol is described (see scheme; TBAF: tetrabutylammonium fluoride; Ts: toluene-4-sulfonyl). Highlights are 1) a rapid oxidative esterification of an acyl aromatic, 2) a reliable dialkylation protocol to form platensic acid, 3) a π-facial conjugate reduction of a dienone, 4) a TBAF-promoted alkylative dearomatization of a free phenol, and 5) a Friedel-Crafts closure of a free lactol.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4275-43-8