Welcome to LookChem.com Sign In|Join Free

CAS

  • or

491616-59-2

Post Buying Request

491616-59-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

491616-59-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 491616-59-2 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 4,9,1,6,1 and 6 respectively; the second part has 2 digits, 5 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 491616-59:
(8*4)+(7*9)+(6*1)+(5*6)+(4*1)+(3*6)+(2*5)+(1*9)=172
172 % 10 = 2
So 491616-59-2 is a valid CAS Registry Number.

491616-59-2Upstream product

491616-59-2Downstream Products

491616-59-2Relevant articles and documents

The mandelamide keto-enol system in aqueous solution. Generation of the enol by hydration of phenylcarbamoylcarbene

Chiang,Guo,Kresge,Richard,Toth

, p. 187 - 194 (2003)

Flash photolysis of diazophenylacetamide in aqueous solution produced phenylcarbamoylcarbene, whose hydration generated a transient species that was identified as the enol isomer of mandelamide. This assignment is based on product identification and the shape of the rate profile for decay of the enol transient, through ketonization to its carbonyl isomer, as well as by the form of acid - base catalysis of and solvent isotope effects on the decay reaction. Rates of enolization of mandelamide were also determined, by monitoring hydrogen exchange at its benzylic position, and these, in combination with the ketonization rate measurements, gave the keto - enol equilibrium constant pKE = 15.88, the acidity constant of the enol ionizing as an oxygen acid, pQaE = 8.40, and the acidity constant of the amide ionizing as a carbon acid pQaK = 24.29. (These acidity constants are concentration quotients applicable at ionic strength = 0.10 M.) These results show the enol content and carbon acid strength of mandelamide, like those of mandelic acid and methyl mandelate, to be orders of magnitude less than those of simple aldehydes and ketones; this difference can be attributed to resonance stabilization of the keto isomers of mandelic acid and its ester and amide derivatives, through electron delocalization into their carbonyl groups from the oxygen and nitrogen substituents adjacent to these groups. The enol of mandelamide, on the other hand, again like the enols of mandelic acid and methyl mandelate, is a substantially stronger acid than the enols of simple aldehydes and ketones. This difference can be attributed to the electronegative nature of the oxygen and nitrogen substituents geminal to the enol hydroxyl group in the enols of mandelic acid and its derivatives; in support of this, the acidity constants of these enols correlate well with field substituent constants of these geminal groups.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 491616-59-2