Welcome to LookChem.com Sign In|Join Free

CAS

  • or

50803-29-7

Post Buying Request

50803-29-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

50803-29-7 Usage

Uses

3-(Chlorosulfonyl)-4-methoxy-benzoic Acid is an intermediate used in the synthesis of 5-Formyl-2-methoxy-benzenesulfonamide (F700730), which is an impurity of Tamsulosin (T006350), a specific α1-adrenoceptor antagonist used in the treatment of benign prostatic hypertrophy.

Check Digit Verification of cas no

The CAS Registry Mumber 50803-29-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,0,8,0 and 3 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 50803-29:
(7*5)+(6*0)+(5*8)+(4*0)+(3*3)+(2*2)+(1*9)=97
97 % 10 = 7
So 50803-29-7 is a valid CAS Registry Number.
InChI:InChI=1/C8H7ClO5S/c1-14-6-3-2-5(8(10)11)4-7(6)15(9,12)13/h2-4H,1H3,(H,10,11)

50803-29-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-chlorosulfonyl-4-methoxybenzoic acid

1.2 Other means of identification

Product number -
Other names 3-Chlorsulfonyl-4-methoxy-benzoesaeure

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:50803-29-7 SDS

50803-29-7Relevant articles and documents

3-Functionalised benzenesulphonamide based 1,3,4-oxadiazoles as selective carbonic anhydrase XIII inhibitors: Design, synthesis and biological evaluation

Swain, Baijayantimala,Abhay,Singh, Priti,Angeli, Andrea,Aashritha, Kamtam,Nagesh, Narayana,Supuran, Claudiu T.,Arifuddin, Mohammed

, (2021/02/27)

A new series of benzenesulphonamide linked-1,3,4-oxadiazole hybrids (6a–s) has been synthesized and tested for their carbonic anhydrase inhibition against human (h) carbonic anhydrase (CA) isoforms hCA I, II, IX, and XIII. Fluorescence properties of some of the synthesized molecules were studied. Most of the molecules exhibited significant inhibitory power, comparable or better than the standard drug acetazolamide (AAZ) on hCA XIII. Out of 19 tested molecules, compound 6e (75.8 nM) was 3 times more potent than AAZ (250.0 nM) against hCA I, whereas compound 6e (15.4 nM), 6g (16.2 nM), 6h (16.4 nM) and 6i (17.0 nM) were found to be more potent than AAZ (17.0 nM) against isoform hCA XIII. It is anticipated that these compounds could be taken as the potential leads for the development of selective hCA XIII isoform inhibitors with improved potency.

COMPOUNDS

-

Page/Page column 94; 179-180, (2020/06/10)

The present invention relates to a compound of formula (Ia), or a pharmaceutically acceptable salt or hydrate thereof, wherein: the group X-Y is -NHSO2- or -SO2NH-; R1 is H or alkyl; R2 is selected from COOH and a tetrazolyl group; R3 is selected from H, Cl and alkyl; R4 is selected from H, Cl and F; R5 is selected from H, alkyl, alkynyl, alkenyl, haloalkyl, SO2-alkyl, Cl, alkoxy, OH, CN, hydroxyalkyl, alkylthio, heteroaryl, cycloalkyl, heterocycloalkyl and haloalkoxy; R6 is H; R7 is selected from H, CN, haloalkyl, Cl, F, SO2-alkyl, SO2NR13R14, optionally substituted heteroaryl and alkyl; R8 is selected from H, alkyl, haloalkyl and halo; R9 is H, C1-C3-alkyl, or halo; R10 and R11, together with the nitrogen to which they are attached, form an azepanyl group, wherein (a) said azepanyl group is substituted by one or more substituents, or (b) one or two carbons in said azepanyl group are replaced by a group selected from O, NH, S and CO, and said azepanyl group is optionally further substituted; or R10 and R11, together with the nitrogen to which they are attached, form an azetidinyl, pyrrolidinyl or piperidinyl group wherein (a) said azetidinyl, pyrrolidinyl or piperidinyl group is substituted by one or more substituents, or (b) one or two carbons in said azetidinyl, pyrrolidinyl or piperidinyl group are replaced by a group selected from NH, S and CO; or R10 and R11, together with the nitrogen to which they are attached, form an 8, 9 or 10-membered bicyclic heterocycloalkyl group, wherein one or two carbons in the bicyclic heterocycloalkyl ring are optionally replaced by a group selected from O, NH, S and CO, and said bicyclic heterocycloalkyl group is optionally substituted; or R10 and R11, together with the nitrogen to which they are attached, form a 6 to 12-membered bicyclic group containing a spirocyclic carbon atom, wherein one or two carbons in the bicyclic group are optionally replaced by a group selected from O, NH, S and CO, and said bicyclic group is optionally substituted, or said bicyclic group is optionally fused to a 5 or 6-membered aryl or heteroaryl group; R13 and R14 are each independently H or alkyl. Further aspects of the invention relate to such compounds for use in the field of immune-oncology and related applications.

Synthesis and Biological Evaluation of 4-Sulfamoylphenyl/Sulfocoumarin Carboxamides as Selective Inhibitors of Carbonic Anhydrase Isoforms hCA II, IX, and XII

Angapelly, Srinivas,Angeli, Andrea,Khan, Arbaj Jabbar,Sri Ramya,Supuran, Claudiu T.,Arifuddin, Mohammed

, p. 1165 - 1171 (2018/05/30)

With the aim to develop potent and selective human carbonic anhydrase inhibitors (hCAIs), we synthesized 4-sulfamoylphenyl/sulfocoumarin benzamides (series 5 a–r and series 7 a–q) and evaluated their inhibition profiles against five isoforms of the zinc-containing human carbonic anhydrase (hCA, EC 4.2.1.1): cytosolic hCA I and II, and the transmembrane isozymes hCA IV, IX, and XII. Compounds 5 a–r were found to selectively inhibit hCA II in the nanomolar range, while being less effective against the other hCA isoforms. As noted from the literature, sulfocoumarin (1,2-benzoxathiine 2,2-dioxide) acts as a “prodrug” inhibitor and is hydrolyzed by the esterase activity of hCA to form 2-hydroxyphenylvinylsulfonic acid, which thereafter binds to the enzyme in a manner similar to that of coumarins and sulfoxocoumarins. All these sulfocoumarins (compounds 7 a–q) were found to be very weak or ineffective as inhibitors of the housekeeping off-target hCA isoforms I and II, and effectively inhibited the transmembrane tumor-associated isoforms IX and XII in the high nanomolar to micromolar ranges. Further structural modifications of these molecules could be useful for the development of effective hCA inhibitors used for the treatment of glaucoma, epilepsy, and cancer.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 50803-29-7