Welcome to LookChem.com Sign In|Join Free

CAS

  • or

51751-44-1

Post Buying Request

51751-44-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

51751-44-1 Usage

Chemical Properties

Colorless solid

Uses

Different sources of media describe the Uses of 51751-44-1 differently. You can refer to the following data:
1. 3,3'-Dibromo-2,2'-dithiophene is used in the preparation of benzothiadiazole copolymers which direct charge transport in thin-film transistors. Used in the synthesis of solar cells which are dithienop yrrole / anthracene based.
2. 3,3’-Dibromo-2,2’-dithiophene is used in the preparation of benzothiadiazole copolymers which direct charge transport in thin-film transistors. Used in the synthesis of solar cells which are dithienopyrrole / anthracene based.
3. suzuki reaction

Application

3,3'-Dibromo-2,2'-bithiophene can be used as organic synthesis intermediates and pharmaceutical intermediates, mainly used in laboratory research and development processes and pharmaceutical and chemical production processes.

Synthesis

The freshly prepared LDA solution (prepared by the addition ofn-BuLi (2.5 M in hexanes, 100 mmol, 40 mL) and diisopropylamine(11.1 g, 110 mmol) in 50 mL of anhydrous THF (78 C to roomtemperature)) was added drop wise to a solution of 3-bromothiophene (16.30 g, 100 mmol) in anhydrous THF (100 mL)at 78 C under nitrogen atmosphere. The reaction mixture wasstirred for 1 h at 78 C and CuCl2 (14.11 g, 105 mmol)was added inone portion. The reaction mixture was allowed towarm up to roomtemperature and treated with aqueous HCl. The organic phaseseparated was collected and the aqueous phase was extracted withdiethyl ether several times. The combined organic phase was driedover anhydrous Na2SO4 and the solution was filtered, concentratedand the residue was purified by silica gel column chromatography(hexane eluent) to afford a the required compound as white solid(yield 85%).1H NMR (500 MHz, CDCl3, d ppm): 7.08 (d, J 5.0 Hz, 2H), 7.40(d, J 5.0 Hz, 2H).

Check Digit Verification of cas no

The CAS Registry Mumber 51751-44-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,1,7,5 and 1 respectively; the second part has 2 digits, 4 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 51751-44:
(7*5)+(6*1)+(5*7)+(4*5)+(3*1)+(2*4)+(1*4)=111
111 % 10 = 1
So 51751-44-1 is a valid CAS Registry Number.

51751-44-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (D3798)  3,3'-Dibromo-2,2'-bithiophene  >98.0%(GC)

  • 51751-44-1

  • 1g

  • 550.00CNY

  • Detail
  • TCI America

  • (D3798)  3,3'-Dibromo-2,2'-bithiophene  >98.0%(GC)

  • 51751-44-1

  • 5g

  • 1,750.00CNY

  • Detail
  • TCI America

  • (D3798)  3,3'-Dibromo-2,2'-bithiophene  >98.0%(GC)

  • 51751-44-1

  • 25g

  • 5,500.00CNY

  • Detail
  • Aldrich

  • (733725)  3,3′-Dibromo-2,2′-bithiophene  97%

  • 51751-44-1

  • 733725-1G

  • 732.42CNY

  • Detail
  • Aldrich

  • (733725)  3,3′-Dibromo-2,2′-bithiophene  97%

  • 51751-44-1

  • 733725-5G

  • 2,747.16CNY

  • Detail

51751-44-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,3'-Dibromo-2,2'-bithiophene

1.2 Other means of identification

Product number -
Other names 3-bromo-2-(3-bromothiophen-2-yl)thiophene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:51751-44-1 SDS

51751-44-1Relevant articles and documents

Optimizing molecular alignment to reduce dark current via side-chain engineering for high-performance polymer photodetector

Liu, Zhitian,Chen, Yixuan,Hu, Yanchuan,Dong, Jun,Wen, Jing,Gao, Jianhong,Li, Pengcheng

, (2021)

Two low-bandgap polymers, PDTPN-α and PDTPN-β, containing diketopyrrolopyrrole (DPP) and dithienopyrrole (DTP) functionalized with two different side chains of α-naphthalene and β-naphthalene were synthesized. Experimental results show that subtle configuration changes at the side chains can effectively influence the molecular alignment, film morphology, and photodetector performance. As a result, the preferential edge-on orientation of PDTPN-β can effectively decrease the dark current density of the photodetector. This wealth of information on the strong correction between the variation in the molecular conformation and the device performance provides a novel avenue to prepare high-performance polymer photodetectors with superior specific detectivity.

Dithienopyrrole compound with twisted triphenylamine termini: Reversible near-infrared electrochromic and mechanochromic dual-responsive characteristics

Zhang, Jing,Chen, Zhao,Yang, Lan,Hu, Fang,Yu, Guang-Ao,Yin, Jun,Liu, Sheng-Hua

, p. 168 - 174 (2017)

A dithieno[3,2-b:2′,3′-d]pyrrole-based luminogen 1 has been synthesized by appending two twisted triphenylamine units to the rigid conjugated dithieno[3,2-b:2′,3′-d]pyrrole core. This compound exhibits reversible mechanochromic luminescence in the solid state and near-infrared electrochromic switching behavior in solution. A reversible switching in fluorescence color between yellow-green and green can be observed through mechanical grinding and vapor fuming of solid powdered 1, which involves an interconversion between a crystalline form and an amorphous phase according to X-ray diffraction analysis. The associated oxidized species of 1 show intense redox-switchable near-infrared absorption and different fluorescence colors in solution in spectroelectrochemical and luminescence measurements. Density functional theory calculations have confirmed that there is considerable electron delocalization between the dithieno[3,2-b:2′,3′-d]pyrrole linker and two triphenylamine redox-active termini during the oxidation process.

A dithieno[3,2-b:2′,3′-d]pyrrole based, NIR absorbing, solution processable, small molecule donor for efficient bulk heterojunction solar cells

Busireddy, Manohar Reddy,Raju Mantena, Venkata Niladri,Chereddy, Narendra Reddy,Shanigaram, Balaiah,Kotamarthi, Bhanuprakash,Biswas, Subhayan,Sharma, Ganesh Datt,Vaidya, Jayathirtha Rao

, p. 32096 - 32106 (2016)

A novel, NIR absorbing organic small molecular donor material denoted as ICT3 with an A-D-D-D-A architecture having dithieno[3,2-b:2′,3′-d]pyrrole (DTP) and butylrhodanine as donor and acceptor moieties, respectively, is synthesized and its thermal, photophysical, electrochemical and photovoltaic properties are explored. ICT3 has excellent stability over a broad range of temperatures with a decomposition temperature (Td corresponds to 5% weight loss) of 372°C, soluble in most common organic solvents (solubility up to 30 mg mL-1) and suitable for solution processing during device fabrication. ICT3 has broad (520-820 nm) and intense visible region absorption (molar excitation coefficient is 1.69 × 105 mol-1 cm-1) and has suitable HOMO and LUMO energy levels with the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) acceptor for efficient exciton dissociation and charge transfer. Bulk heterojunction solar cells (BHJSCs) with an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/ICT3:PC71BM/poly(9,9-bis(3′-(N,N-dimethylamino)propyl)fluorene-2,7-diyl)-alt-(9,9-dioctylfluorene-2,7-diyl) (PFN)/aluminium (Al) structure are fabricated and the BHJSCs with the active layer as cast from chloroform solution displayed a power conversion efficiency (PCE) of 3.04% (JSC = 8.22 mA cm-2, VOC = 0.86 V and FF = 0.43). Annealing the active layer significantly improved the PCE of these BHJSCs. While thermal annealing of the active layer improved the PCE of the BHJSCs to 4.94%, thermal followed by solvent vapour annealing enhanced the PCE to 6.53%. X-ray diffraction and atomic force microscopy analyses are carried out on the active layer and these results revealed that annealing treatment improves the crystallinity and nanoscale morphology of the active layer, enriches the device exciton generation and dissociation efficiency, charge transport and collection efficiency and reduces carrier recombination. The observed higher PCE (6.53%) of the BHJSCs having ICT3 with a DTP donor moiety broadens the scope to develop new, efficient DTP based small molecular donor materials for BHJSCs.

Effect of fluorine on optoelectronic properties in DI-A-DII-A-DI type organic molecules: A combined experimental and DFT study

Appalanaidu, Ejjurothu,Busireddy, Manohar Reddy,Chetti, Prabhakar,Vaidya, Jayathirtha Rao,Vidya, V. M.

, (2020/03/17)

The impact of the substitution of fluorine atom/atoms on the optoelectronic features of organic molecules having DI-A-DII-A-DI type architecture is examined in the current work. The three synthesized organic molecules (SMD1, SMD2 and SMD3) comprise of a dithienopyrrole (DTP) derivative as a central donor (DII), which is flanked between two benzothiadiazole (BT) moieties (electron acceptors, A). The BT core on each of two ends is joined to an electron-donating benzodithiophene (BDT) derivative (DI). The SMD1, SMD2 and SMD3 are substituted with 0, 2 and 4 fluorine atoms on their BT moiety respectively. The assistance of DFT methods is taken to evaluate the influence of fluorine on reorganization energies, ionizing potential and electron affinity of molecules. The thermal stability of molecules is mapped by TGA studies. Cyclic voltammetry studies are carried out to comprehend the characteristics of highest molecular orbital, lowest unoccupied molecular orbital and the bandgap of molecules, which are also supported by DFT methods. The molecules displayed better absorption properties in the near-infrared (NIR) region, excellent solution processability in a variety of organic solvents, low bandgap and optimum thermal toughness to make them applicable in the construction of OBHJSCs to play the role of donor materials when connected with acceptors like fullerene derivatives.

Dialkylthienosilole and N-alkyldithienopyrrole-based copolymers: Synthesis, characterization, and photophysical study

El-Shehawy, Ashraf A.,Abdo, Nabiha I.,El-Hendawy, Morad M.,Abdallah, Abdul-Rahman I.A.,Lee, Jae-Suk

, (2020/03/04)

We synthesized and characterized a set of D-π-A conjugated copolymers containing thiophene π-bridge. While benzothiadiazole serves as an acceptor (A) unit, the 4,4-dialkyldithieno[3,2-b:2′,3′-d]silole (DTSi) or N-alkyldithieno[3,2-b:2′,3′-d]pyrrole (DTP) act as a donor (D) unit. The copolymers were synthesized via the commonly Stille cross-coupling reaction and exhibited molecular weights of 18.6 to 31.3 kg/mol. The main structural differences among the copolymers are the type of donor moiety (DTSi or DTP) and the position of hexyl side chains on the thiophene π-bridge units between the D and A moieties. The ultimate goal of this work is to explore the effect of three structural factors that could control the photophysical properties of polymers in order to help in the rational design of polymers having specific properties used in optoelectronic devices. The physical properties include thermal stability, photophysical, and electrochemical properties. The structural factors are (a) the power of donor moiety, (b) the position of alkyl side chain on the thiophene π-bridge, and (c) the nature of the alkyl side chain. Also, we utilized the density functional theory calculations to calculate the geometric and electronic structures. A good agreement was remarked between the experimental and theoretical findings.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 51751-44-1