Welcome to LookChem.com Sign In|Join Free

CAS

  • or

53250-82-1

Post Buying Request

53250-82-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

53250-82-1 Usage

Uses

N-(4-Aminophenyl)methanesulfonamide is a useful intermediate for the large-scale preparation of amino-methanesulfonylaminobenzenesulfonamide.

Check Digit Verification of cas no

The CAS Registry Mumber 53250-82-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,3,2,5 and 0 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 53250-82:
(7*5)+(6*3)+(5*2)+(4*5)+(3*0)+(2*8)+(1*2)=101
101 % 10 = 1
So 53250-82-1 is a valid CAS Registry Number.
InChI:InChI=1/C7H10N2O2S/c1-12(10,11)9-7-4-2-6(8)3-5-7/h2-5,9H,8H2,1H3

53250-82-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-(Methylsulfonamido)aniline

1.2 Other means of identification

Product number -
Other names N-(4-Aminophenyl)methanesulfonamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:53250-82-1 SDS

53250-82-1Relevant articles and documents

Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds

Pallesen, Jakob S.,Narayanan, Dilip,Tran, Kim T.,Solbak, Sara M. ?.,Marseglia, Giuseppe,S?rensen, Louis M. E.,H?j, Lars J.,Munafò, Federico,Carmona, Rosa M. C.,Garcia, Anthony D.,Desu, Haritha L.,Brambilla, Roberta,Johansen, Tommy N.,Popowicz, Grzegorz M.,Sattler, Michael,Gajhede, Michael,Bach, Anders

, p. 4623 - 4661 (2021/05/07)

Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 μM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 μM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.

5-SULFAMOYL-2-HYDROXYBENZAMIDE DERIVATIVES

-

Page/Page column 127, (2017/09/27)

The invention is directed to substituted salicylamide derivatives. Specifically, the invention is directed to compounds according to Formula (I): wherein R, R1 and R2 are as defined herein, or a pharmaceutically acceptable salt thereof. The compounds of the invention are inhibitors of CD73 and can be useful in the treatment of cancer, pre-cancerous syndromes and diseases associated with CD73 inhibition, such as AIDS, the treatment of HIV, autoimmune diseases, infections, atherosclerosis, and ischemia–reperfusion injury. Accordingly, the invention is further directed to pharmaceutical compositions comprising a compound of the invention. The invention is still further directed to methods of inhibiting CD73 activity and treatment of disorders associated therewith using a compound of the invention or a pharmaceutical composition comprising a compound of the invention.

Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors

Elgaher, Walid A. M.,Sharma, Kamal K.,Haupenthal, J?rg,Saladini, Francesco,Pires, Manuel,Real, Eleonore,Mély, Yves,Hartmann, Rolf W.

supporting information, p. 7212 - 7222 (2016/08/24)

We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 53250-82-1