Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5331-92-0

Post Buying Request

5331-92-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5331-92-0 Usage

General Description

3,4-Dichlorobenzaldehyde Oxime is a specific type of synthetic organic compound, classified under the category of Aromatic Homomonocyclic Compounds. 3,4-DICHLOROBENZALDEHYDE OXIME includes elements like carbon, hydrogen, nitrogen, oxygen, and chlorine in its molecular structure. Oximes are compounds that contain the -C(=NOH) functional group, and in the case of this chemical, it is attached to a 3,4-dichlorobenzaldehyde structure. While its specific applications may vary, oximes are often used in chemical synthesis or as intermediates in the production of other complex compounds. As with any chemical, handling and use of 3,4-Dichlorobenzaldehyde Oxime must be done with care due to potential health and safety risks. Detailed information on its exact properties, handling precautions, and safety guidance should be referred from its Material Safety Data Sheet.

Check Digit Verification of cas no

The CAS Registry Mumber 5331-92-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,3,3 and 1 respectively; the second part has 2 digits, 9 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 5331-92:
(6*5)+(5*3)+(4*3)+(3*1)+(2*9)+(1*2)=80
80 % 10 = 0
So 5331-92-0 is a valid CAS Registry Number.
InChI:InChI=1/C7H5Cl2NO/c8-6-2-1-5(4-10-11)3-7(6)9/h1-4,11H/b10-4+

5331-92-0 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L10202)  3,4-Dichlorobenzaldoxime, 98%   

  • 5331-92-0

  • 1g

  • 318.0CNY

  • Detail
  • Alfa Aesar

  • (L10202)  3,4-Dichlorobenzaldoxime, 98%   

  • 5331-92-0

  • 5g

  • 1219.0CNY

  • Detail

5331-92-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,4-DICHLOROBENZALDEHYDE OXIME

1.2 Other means of identification

Product number -
Other names 3,4-dichloro-benzaldehyde oxime

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5331-92-0 SDS

5331-92-0Upstream product

5331-92-0Relevant articles and documents

The local and natural sources in synthetic methods: the practical synthesis of aryl oximes from aryl aldehydes under catalyst-free conditions in mineral water

Goksu, H.,Orhan, E.

, (2021/07/27)

The synthesis of oximes from aryl aldehydes was prepared using hydroxylamine hydrochloride. The obtained oxime compounds were synthesized at maximum efficiency in mineral water at room temperature. The developed method is economical, practical and environmentally friendly. All of the aldehydes were converted the oxime a method using local sources and useful for industrial applications is introduced in the literature. Graphic abstract: In this study, addition elimination reaction, one of the important reactions of organic chemistry, was carried out using local sources. With this reaction, aryl oximes were obtained from aryl aldehydes in mineral water under catalyst-free conditions.[Figure not available: see fulltext.]

Synthesis and SAR study of simple aryl oximes and nitrofuranyl derivatives with potent activity against Mycobacterium tuberculosis

Calixto, Stephane Lima,Carvalho, Guilherme da Silva Louren?o,Coimbra, Elaine Soares,Granato, Juliana da Trindade,Louren?o, Maria Cristina da Silva,Wardell, James,da Costa, Cristiane Fran?a,de Souza, Marcus Vinicius Nora

, p. 12 - 20 (2020/02/06)

Background: Oximes and nitrofuranyl derivatives are particularly important compounds in medicinal chemistry. Thus, many researchers have been reported to possess antibacterial, antiparasitic, insecticidal and fungicidal activities. Methods: In this work, we report the synthesis and the biological activity against Mycobacterium tuberculosis H37RV of a series of fifty aryl oximes, ArCH=N-OH, I, and eight nitrofuranyl compounds, 2-nitrofuranyl-X, II. Results: Among the oximes, I: Ar = 2-OH-4-OH, 42, and I: Ar = 5-nitrofuranyl, 46, possessed the best activity at 3.74 and 32.0 μM, respectively. Also, 46, the nitrofuran compounds, II; X = MeO, 55, and II: X = NHCH2Ph, 58, (14.6 and 12.6 μM, respectively), exhibited excellent biological activities and were non-cytotoxic. Conclusion: The compound 55 showed a selectivity index of 9.85. Further antibacterial tests were performed with compound 55 which was inactive against Enterococcus faecalis, Klebisiella pneumonae, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhymurium and Shigel-la flexneri. This study adds important information to the rational design of new lead anti-TB drugs. Structure-activity Relationship (SAR) is reported.

Design, synthesis of novel 4,5-dihydroisoxazole-containing benzamide derivatives as highly potent FtsZ inhibitors capable of killing a variety of MDR Staphylococcus aureus

Song, Di,Bi, Fangchao,Zhang, Nan,Qin, Yinhui,Liu, Xingbang,Teng, Yuetai,Ma, Shutao

supporting information, (2020/09/11)

Antibiotic resistance among clinically significant bacterial pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) is becoming a prevalent threat to public health, and new antibacterial agents with novel mechanisms of action hence are in an urgent need. As a part of continuing effort to develop antibacterial agents, we rationally designed and synthesized two series of 4,5-dihydroisoxazol-5-yl and 4,5-dihydroisoxazol-3-yl-containing benzamide derivatives that targeted the bacterial cell division protein FtsZ. Evaluation of their activity against a panel of Gram-positive and -negative pathogens revealed that compound A16 possessing the 4,5-dihydroisoxazol-5-yl group showed outstanding antibacterial activity (MIC, ≤0.125–0.5 μg/mL) against various testing strains, including methicillin-resistant, penicillin-resistant and clinical isolated S. aureus strains. Besides, further mouse infection model revealed that A16 could be effective in vivo and non-toxic to Hela cells. Finally, a detailed discussion of structure-activity relationships was conducted, referring to the docking results. It is worth noting that substituting a 4,5-dihydroisoxazole ring for the isoxazole ring not only broadened the antibacterial spectrum but also resulted in a significant increase in antibacterial activity against S. aureus strains. Taken together, these results suggest a promising chemotype for the development of new FtsZ-targeting bactericidal agents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5331-92-0