54355-88-3Relevant articles and documents
Metal- and Hydride-Free Pentannulative Reductive Aldol Reaction
Satpathi, Bishnupada,Dutta, Lona,Ramasastry
supporting information, p. 170 - 174 (2019/01/04)
Traditionally, the reductive aldol reaction is a metal-catalyzed and hydride-promoted coupling between enones and aldehydes. We present a phosphine-mediated diastereoselective intramolecular reductive aldol reaction of α-substituted dienones and aldehydes, which is metal-free and hydride-free. The synthetic utility of the reductive aldol adducts is demonstrated by elaborating them in one step to indeno[1,2-b]furanones, indeno[1,2-b]pyrans, and dibenzo[a,h]azulen-8-ones.
Chemoselective Biohydrogenation of Alkenes in the Presence of Alkynes for the Homologation of 2-Alkynals/3-Alkyn-2-ones into 4-Alkynals/Alkynols
Colombo, Danilo,Brenna, Elisabetta,Gatti, Francesco G.,Ghezzi, Maria Chiara,Monti, Daniela,Parmeggiani, Fabio,Tentori, Francesca
supporting information, p. 2638 - 2648 (2019/05/16)
The chemoselective hydrogenation of alkenes in the presence of alkynes is a very challenging transformation to achieve with traditional chemical methods. The development of an effective procedure to perform this transformation would enrich the tool-kit available to organic chemists for the development of useful synthetic routes, and the creation of novel structural motifs. The reduction of activated alkene bonds by ene-reductases (ERs) is completely chemoselective, because of the mechanism of the reaction. Thus, we investigated the use of ERs belonging to the Old Yellow Enzyme family for the reduction of α,β-unsaturated aldehydes with a conjugated C≡C triple bond at the γ position. This reaction was exploited as the key step for the development of an effective homologation route to convert aryl and alkyl substituted propynals and butynones into 4-alkynals and 4-alkynols, avoiding some troublesome or hazardous steps of known synthetic routes. (Figure presented.).