54596-69-9Relevant articles and documents
Discovery of Axelopran (TD-1211): A Peripherally Restricted μ-Opioid Receptor Antagonist
Armstrong, Scott R.,Beattie, David T.,Campbell, Christina B.,Church, Timothy J.,Colson, Pierre-Jean,Dalziel, Sean M.,Jacobsen, John R.,Jiang, Lan,Long, Daniel D.,Obedencio, Glenmar P.,Rapta, Miroslav,Saito, Daisuke,Stergiades, Ioanna,Tsuruda, Pamela R.,Van Dyke, Priscilla M.,Vickery, Ross G.
supporting information, (2019/12/11)
The effects of opioids in the central nervous system (CNS) provide significant benefit in the treatment of pain but can also lead to physical dependence and addiction, which has contributed to a growing opioid epidemic in the United States. Gastrointestinal dysfunction is an additional serious consequence of opioid use, and this can be treated with a localized drug distribution of a non-CNS penetrant, peripherally restricted opioid receptor antagonist. Herein, we describe the application of Theravance's multivalent approach to drug discovery coupled with a physicochemical property design strategy by which the N-substituted-endo-3-(8-aza-bicyclo[3.2.1]oct-3-yl)-phenyl carboxamide series of μ-opioid receptor antagonists was optimized to afford the orally absorbed, non-CNS penetrant, Phase 3 ready clinical compound axelopran (TD-1211) 19i as a potential treatment for opioid-induced constipation.
N-Alkylation of Alkylolamines with Alcohols Over Mesoporous Solid Acid–Base Cs–B–Zr Catalyst
Chen, Aimin,Wang, Houyong,Liu, Rui,Bo, Yingying,Hu, Jun
, p. 1182 - 1193 (2016/07/06)
Abstract: The mesoporous solid acid–base Cs–B–Zr mixed oxides were synthesized using the co-precipitation method followed by a subsequent thermal treatment. The catalytic activity of solid Cs–B–Zr mixed oxide was tested for solvent free acid–base catalysed direct alkylolamines with alcohols as green alkylating agent. The effects of Cs/B/Zr ratio, calcination temperature, reaction conditions, and reaction substrate on the catalytic performance of the catalysts were investigated. The XRD, N2 adsorption–desorption, ICP-OES, FT-IR and NH3/CO2-TPD results showed that the mesoporous structure and acid–base properties of the catalysts play important roles in the reaction. A suitable number of acid and basic sites on the catalyst lead to a high activity for the N-alkylation reaction. Graphical Abstract: A direct N-alkylation of amino alcohol with alcohols has been developed using mixed oxide Cs–B–Zr as an acid–base bifunctionalized catalyst.[Figure not available: see fulltext.]
Phosphorous amine lubricant additives
-
, (2008/06/13)
Lubricant additives are produced by reacting an alkoxylated amine with phosphorous acid. The additives preferably also contain a boron moiety which is reacted with the phosphorous acid and amine, preferably in a one step reaction. More preferably, a mono-functional alcohol or a long-chain aliphatic carboxylic acid is added to this mixture. The additives are particularly useful in metal working oils and particularly as extreme pressure additives to replace the currently used chlorinated paraffin additives.