Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5463-50-3

Post Buying Request

5463-50-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5463-50-3 Usage

General Description

1,3-Isobenzofurandione,4,7-dimethyl- is a chemical compound with the molecular formula C10H8O3. It is a derivative of isobenzofuran and is commonly known as phthalide. 1,3-Isobenzofurandione,4,7-dimethyl- is used in the synthesis of pharmaceuticals, perfumes, and other organic compounds. It is also utilized in the production of dyes, polymers, and as a precursor in the manufacturing of various chemicals. 1,3-Isobenzofurandione,4,7-dimethyl- has a wide range of industrial applications and is an important building block in chemical synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 5463-50-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,4,6 and 3 respectively; the second part has 2 digits, 5 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 5463-50:
(6*5)+(5*4)+(4*6)+(3*3)+(2*5)+(1*0)=93
93 % 10 = 3
So 5463-50-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H8O3/c1-5-3-4-6(2)8-7(5)9(11)13-10(8)12/h3-4H,1-2H3

5463-50-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4,7-dimethyl-2-benzofuran-1,3-dione

1.2 Other means of identification

Product number -
Other names 3,6-Dimethylphthalsaeureanhydrid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5463-50-3 SDS

5463-50-3Relevant articles and documents

Selectivity Control in the Tandem Aromatization of Bio-Based Furanics Catalyzed by Solid Acids and Palladium

Genuino, Homer C.,Thiyagarajan, Shanmugam,van der Waal, Jan C.,de Jong, Ed,van Haveren, Jacco,van Es, Daan S.,Weckhuysen, Bert M.,Bruijnincx, Pieter C. A.

, p. 277 - 286 (2017/01/17)

Bio-based furanics can be aromatized efficiently by sequential Diels–Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H-Y and Pd/C, the hydrogenated DA adduct of 2-methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3-methylphthalic anhydride and o- and m-toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3-methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H-Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite-to-Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3-methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H-Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations.

A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics

Thiyagarajan, Shanmugam,Genuino, Homer C.,Van Der Waal, Jan C.,De Jong, Ed,Weckhuysen, Bert M.,Van Haveren, Jacco,Bruijnincx, Pieter C. A.,Van Es, Daan S.

supporting information, p. 1368 - 1371 (2016/02/12)

Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80 % selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination. Just heat and tumble: Furanics-derived hydrogenated Diels-Alder adducts can be conveniently converted, over acidic zeolites, into renewable aromatics using a solid-phase conversion strategy. The zeolite H-Y was found to perform the best and can be easily reused after calcination.

Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride

Mahmoud, Eyas,Watson, Donald A.,Lobo, Raul F.

, p. 167 - 175 (2014/01/06)

A route to renewable phthalic anhydride (2-benzofuran-1,3-dione) from biomass-derived furan and maleic anhydride (furan-2,5-dione) is investigated. Furan and maleic anhydride were converted to phthalic anhydride in two reaction steps: Diels-Alder cycloaddition followed by dehydration. Excellent yields for the Diels-Alder reaction between furan and maleic-anhydride were obtained at room temperature and solvent-free conditions (SFC) yielding 96% exo-4,10-dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione (oxanorbornene dicarboxylic anhydride) after 4 h of reaction. It is shown that this reaction is resistant to thermal runaway because of its reversibility and exothermicity. The dehydration of the oxanorbornene was investigated using mixed-sulfonic carboxylic anhydrides in methanesulfonic acid (MSA). An 80% selectivity to phthalic anhydride (87% selectivity to phthalic anhydride and phthalic acid) was obtained after running the reaction for 2 h at 298 K to form a stable intermediate followed by 4 h at 353 K to drive the reaction to completion. The structure of the intermediate was determined. This result is much better than the 11% selectivity obtained in neat MSA using similar reaction conditions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5463-50-3