54799-03-0Relevant articles and documents
Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications
Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming
supporting information, p. 1618 - 1629 (2021/01/25)
Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.
Cobalt-Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to One-Pot Synthesis of Aldimines and Amides
Gudun, Kristina A.,Hayrapetyan, Davit,Khalimon, Andrey Y.,Segizbayev, Medet,Slamova, Ainur,Zakarina, Raikhan
, (2021/11/30)
The commercially available and bench-stable Co(acac)2 ligated with bis[(2-diphenylphosphino)phenyl] ether (dpephos) was employed for selective room temperature hydroboration of nitro compounds with HBPin (TOF up to 4615 h?1), tolerating halide, hydroxy, amino, ether, ester, lactone, amide and heteroaromatic functionalities. These reactions offered a direct access to a variety of N-borylamines RN(H)BPin, which were in situ treated with aldehydes and carboxylic acids to produce a series of aldimines and secondary carboxamides without the need for dehydrating and/or coupling reagents. Combination of these transformations in a sequential one-pot manner allowed for direct and selective synthesis of aldimines and secondary carboxamides from readily available and inexpensive nitro compounds.
Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal
, p. 3943 - 3957 (2021/04/12)
The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.
Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation to Primary Amines: A Combined Effort
Tokmic, Kenan,Jackson, Bailey J.,Salazar, Andrea,Woods, Toby J.,Fout, Alison R.
supporting information, p. 13554 - 13561 (2017/10/05)
The selective hydrogenation of nitriles to primary amines using a bench-stable cobalt precatalyst under 4 atm of H2 is reported herein. The catalyst precursor was reduced in situ using NaHBEt3, and the resulting Lewis acid formed, BEt3, was found to be integral to the observed catalysis. Mechanistic insights gleaned from para-hydrogen induced polarization (PHIP) transfer NMR studies revealed that the pairwise hydrogenation of nitriles proceeded through a Co(I/III) redox process.
A proton-switchable bifunctional ruthenium complex that catalyzes nitrile hydroboration
Geri, Jacob B.,Szymczak, Nathaniel K.
supporting information, p. 12808 - 12814 (2015/10/28)
A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.
FRICTIONLESS MOLECULAR ROTARY MOTORS
-
Page/Page column 33, (2010/02/17)
A rotaxane consisting of a cucurbituril and an uncharged guest molecule, having low or null affinity therebetween is provided as well as processes for providing the same. Various uses as energy converters (“frictionless” molecular motors), biochips and biosensors using the same are also provided.
SYNTHESIS AND PROPERTIES OF 3- AND 4-AMINOBENZYLAMINE DERIVATIVES
Kraska, Jan,Teodorczyk, Zygmunt
, p. 1025 - 1034 (2007/10/02)
Derivatives of 3- and 4-aminobenzylamine substituted by chlorine atom, methyl or methoxyl group in the ring position 2, 4, 5 or 6 were synthesized.Structures of the compounds obtained were confirmed by spectroscopic (IR, NMR) and physico-chemical methods. pKa values were determined for the prepared amines and correlated with ? constants of substituents.The values of ?n meta and ?n para were found for the methylammonium group.