Welcome to LookChem.com Sign In|Join Free

CAS

  • or

56881-19-7

Post Buying Request

56881-19-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

56881-19-7 Usage

Molecular class

Malonic acid diethyl esters

Derivative

Malonic acid

Functional groups

Methoxyphenylamino group, methylene bridge

Reactivity

Potential applications in organic synthesis and pharmaceutical research

Biological activities

Relevance for medicinal chemistry studies

Potential uses

Development of novel drugs and materials with specific properties.

Check Digit Verification of cas no

The CAS Registry Mumber 56881-19-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,6,8,8 and 1 respectively; the second part has 2 digits, 1 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 56881-19:
(7*5)+(6*6)+(5*8)+(4*8)+(3*1)+(2*1)+(1*9)=157
157 % 10 = 7
So 56881-19-7 is a valid CAS Registry Number.

56881-19-7Relevant articles and documents

Crystal Packing Modulation of the Strength of Resonance-Assisted Hydrogen Bonds and the Role of Resonance-Assisted Pseudoring Stacking in Geminal Amido Esters: Study Based on Crystallography and Theoretical Calculations

Venkatesan, Perumal,Thamotharan, Subbiah,Percino, M. Judith,Ilangovan, Andivelu

, p. 779 - 798 (2021/01/13)

A detailed experimental and theoretical investigation of a series of substituted geminal amido esters (ethyl (2E)-3-(arylamino)-2-(arylcarbamoyl)prop-2-enoate, AME-1-8) leading to the identification of a unique angularly fused pseudotricyclic (S(6),S(6),S(6)) ring system stabilized by an intramolecular resonance-assisted hydrogen bond (RAHB) and a non-RAHB are presented in addition to weak intermolecular interactions. An analysis of X-ray and theoretical models reveals that the strength of the intramolecular RAHB (N1-H1N···O1) varies in a wide range (6.9-11.4 kcal mol-1) due to crystal-packing constraints arising from different aromatic ring substitutions. However, the effect is less significant and the strength differs only in a narrow range (8.2-9.9 kcal mol-1) in the case of non-RAHB. The downfield shift (δ~12.3) observed for the N-Haniline signal in 1H NMR spectra of AME-1-8 is due to the presence of intramolecular RAHB. A PIXEL energy analysis suggests that the molecular dimer formed by stacking of RAHB pseudorings is found to be strong (Etot = -14.4 to -17.9 kcal mol-1), and this dimer forms the basic motif in most of the structures reported herein. A detailed analysis of the isostructurality suggests that the basic motif exists in most of the structural combinations. The weak intermolecular C-H···O, C-H···Cl, and C-H···πinteractions play a vital role in the stabilization of these crystal structures, as evaluated by PIXEL and Bader's quantum theory of atoms in molecules approach (QTAIM). A lattice energy analysis suggests that the Coulombic contribution and total lattice energies are higher in the para-substituted compounds (AME-2, AME-5, and AME-8) in comparison to the other isomeric compounds. Further, the crystal packing of these compounds is analyzed on the basis of the energy frameworks. It shows that most of the crystals show similar 3D topologies, suggesting that these compounds may have similar mechanical behavior.

Structural development of a type-1 ryanodine receptor (RyR1) Ca2+-release channel inhibitor guided by endoplasmic reticulum Ca2+ assay

Mori, Shuichi,Iinuma, Hiroto,Manaka, Noriaki,Ishigami-Yuasa, Mari,Murayama, Takashi,Nishijima, Yoshiaki,Sakurai, Akiko,Arai, Ryota,Kurebayashi, Nagomi,Sakurai, Takashi,Kagechika, Hiroyuki

, p. 837 - 848 (2019/07/12)

Type-1 ryanodine receptor (RyR1) is a calcium-release channel localized on sarcoplasmic reticulum (SR) of the skeletal muscle, and mediates muscle contraction by releasing Ca2+ from the SR. Genetic mutations of RyR1 are associated with skeletal muscle diseases such as malignant hyperthermia and central core diseases, in which over-activation of RyR1 causes leakage of Ca2+ from the SR. We recently developed an efficient high-throughput screening system based on the measurement of Ca2+ in endoplasmic reticulum, and used it to identify oxolinic acid (1) as a novel RyR1 channel inhibitor. Here, we designed and synthesized a series of quinolone derivatives based on 1 as a lead compound. Derivatives bearing a long alkyl chain at the nitrogen atom of the quinolone ring and having a suitable substituent at the 7-position of quinolone exhibited potent RyR1 channel-inhibitory activity. Among the synthesized compounds, 14h showed more potent activity than dantrolene, a known RyR1 inhibitor, and exhibited high RyR1 selectivity over RyR2 and RyR3. These compounds may be promising leads for clinically applicable RyR1 channel inhibitors.

Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents

Su, Tong,Zhu, Jiongchang,Sun, Rongqin,Zhang, Huihui,Huang, Qiuhua,Zhang, Xiaodong,Du, Runlei,Qiu, Liqin,Cao, Rihui

, p. 154 - 167 (2019/06/11)

A series of new quinoline derivatives was designed, synthesized and evaluated for their antiproliferative activity. The results demonstrated that compounds 11p, 11s, 11v, 11x and 11y exhibited potent antiproliferative activity with IC50 value of lower than 10 μM against seven human tumor cell lines, and N-(3-methoxyphenyl)-7- (3-phenylpropoxy)quinolin-4-amine 11x was found to be the most potent antiproliferative agent against HCT-116, RKO, A2780 and Hela cell lines with an IC50 value of 2.56, 3.67, 3.46 and 2.71 μM, respectively. The antitumor efficacy of the representative compound 11x in mice was also evaluated, and the results showed that compound 11x effectively inhibited tumor growth and decreased tumor weight in animal models. Further investigation on mechanism of action indicated that compound 11x could inhibit colorectal cancer growth through ATG5-depenent autophagy pathway. Therefore, these quinoline derivatives are a new class of molecules that have the potential to be developed as new antitumor drugs.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 56881-19-7