Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5988-91-0

Post Buying Request

5988-91-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5988-91-0 Usage

Chemical Properties

Colorless to pale yellow clear liquid; lemon, green, aldehydic aroma.

Aroma threshold values

Citrus-type, medium strength odor; recommend smelling in a 10.00% solution or less

Check Digit Verification of cas no

The CAS Registry Mumber 5988-91-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,9,8 and 8 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 5988-91:
(6*5)+(5*9)+(4*8)+(3*8)+(2*9)+(1*1)=150
150 % 10 = 0
So 5988-91-0 is a valid CAS Registry Number.
InChI:InChI=1/C10H20O/c1-9(2)5-4-6-10(3)7-8-11/h8-10H,4-7H2,1-3H3

5988-91-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,7-dimethyloctanal

1.2 Other means of identification

Product number -
Other names TETRAHYDROGERANIAL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Flavouring Agent: FLAVOURING_AGENT
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5988-91-0 SDS

5988-91-0Relevant articles and documents

Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core–Shell Catalyst

Beller, Matthias,Feng, Lu,Gao, Jie,Jackstell, Ralf,Jagadeesh, Rajenahally V.,Liu, Yuefeng,Ma, Rui

supporting information, p. 18591 - 18598 (2021/06/28)

A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments.

Efficient preparation and application of monodisperse palladium loaded graphene oxide as a reusable and effective heterogeneous catalyst for suzuki cross-coupling reaction

Diler, Fatma,Burhan, Hakan,Genc, Hayriye,Kuyuldar, Esra,Zengin, Mustafa,Cellat, Kemal,Sen, Fatih

, (2019/11/29)

A homogeneously dispersed graphene oxide supported palladium nanomaterial (Pd?GO) has been successfully synthesized and used as a catalyst in cross-coupling reactions at room temperature. Various analytical techniques such as X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) were used to characterize the monodisperse Pd?GO. Monodisperse Pd?GO nanomaterials were used for the cross-coupling reactions which brought together organic molecules with functional significance. This catalyst showed superior catalytic activity and stability for these coupling reactions. High product yields, short reaction times and mild reaction conditions, obtained by the using of developed catalysts. Importantly, the catalyst can be used at least five experiments successfully without losing its efficiency.

Catalytic Access to Functionalized Allylic gem-Difluorides via Fluorinative Meyer–Schuster-Like Rearrangement

An, Rui,Li, Huimin,Liao, Lihao,Wu, Jin-Ji,Xu, Yang,Zhao, Xiaodan

supporting information, p. 11010 - 11019 (2020/05/18)

An unprecedented approach for efficient synthesis of functionalized allylic gem-difluorides via catalytic fluorinative Meyer–Schuster-like rearrangement is disclosed. This transformation proceeded with readily accessible propargylic fluorides, and low-cost B–F reagents and electrophilic reagents by sulfide catalysis. A series of iodinated, brominated, and trifluoromethylthiolated allylic gem-difluorides that were difficult to access by other methods were facilely produced with a wide range of functional groups. Importantly, the obtained iodinated products could be incorporated into different drugs and natural products, and could be expediently converted into many other valuable gem-difluoroalkyl molecules as well. Mechanistic studies revealed that this reaction went through a regioselective fluorination of alkynes followed by a formal 1,3-fluorine migration under the assistance of the B–F reagents to give the desired products.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5988-91-0