61393-07-5Relevant articles and documents
Regioselective ortho-carboxylation of phenols catalyzed by benzoic acid decarboxylases: A biocatalytic equivalent to the Kolbe-Schmitt reaction
Wuensch, Christiane,Gross, Johannes,Steinkellner, Georg,Lyskowski, Andrzej,Gruber, Karl,Glueck, Silvia M.,Faber, Kurt
, p. 9673 - 9679 (2014/03/21)
The enzyme catalyzed carboxylation of electron-rich phenol derivatives employing recombinant benzoic acid decarboxylases at the expense of bicarbonate as CO2 source is reported. In contrast to the classic Kolbe-Schmitt reaction, the biocatalytic equivalent proceeded in a highly regioselective fashion exclusively at the ortho-position of the phenolic directing group in up to 80% conversion. Several enzymes were identified, which displayed a remarkably broad substrate scope encompassing alkyl, alkoxy, halo and amino- functionalities. Based on the crystal structure and molecular docking simulations, a mechanistic proposal for 2,6-dihydroxybenzoic acid decarboxylase is presented.
Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives
Wuensch, Christiane,Glueck, Silvia M.,Gross, Johannes,Koszelewski, Dominik,Schober, Markus,Faber, Kurt
supporting information; experimental part, p. 1974 - 1977 (2012/06/15)
The enzymatic carboxylation of phenol and styrene derivatives using (de)carboxylases in carbonate buffer proceeded in a highly regioselective fashion: Benzoic acid (de)carboxylases selectively formed o-hydroxybenzoic acid derivatives, phenolic acid (de)carboxylases selectively acted at the β-carbon atom of styrenes forming (E)-cinnamic acids.