62242-95-9Relevant articles and documents
IMIDAZOPYRIDAZINECARBONITRILES USEFUL AS KINASE INHIBITORS
-
Page/Page column 101-102, (2010/04/28)
The invention provides compounds of Formula (I) and pharmaceutically acceptable salts thereof. The Formula (I) imidazopyridazines inhibit protein kinase activity thereby making them useful as anticancer agents.
Nonpeptide inhibitors of measles virus entry
Sun, Aiming,Prussia, Andrew,Zhan, Weiqiang,Murray, Ernest E.,Doyle, Joshua,Cheng, Li-Ting,Yoon, Jeong-Joong,Radchenko, Eugene V.,Palyulin, Vladimir A.,Compans, Richard W.,Liotta, Dennis C.,Plemper, Richard K.,Snyder, James P.
, p. 5080 - 5092 (2007/10/03)
Measles virus (MV) is one of the most infectious pathogens known. Despite the existence of a vaccine, over 500 000 deaths/year result from MV or associated complications. Anti-measles compounds could conceivably reverse these statistics. Previously, we described a homology model of the MV fusion protein trimer and a putative binding site near the head-neck region. The resulting model permitted the identification of two nonpeptidic entry inhibitors. Here, we present the design, synthesis, and bioevaluation of several series of fusion inhibitors and describe their structure-activity relationships (SAR). Five simply substituted anilides show low-μM blockade of the MV, one of which (AS-48) exhibits IC50 = 0.6-3.0 μM across a panel of wild-type MV strains found in the field. Molecular field topology analysis (MFTA), a 2D QSAR approach based on local molecular properties (atomic charges, hydrogen-bonding capacity and local lipophilicity), applied to the anilide series suggests structural modifications to improve potency.
Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: Molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives
Rampa, Angela,Bisi, Alessandra,Belluti, Federica,Gobbi, Silvia,Valenti, Piero,Andrisano, Vincenza,Cavrini, Vanni,Cavalli, Andrea,Recanatini, Maurizio
, p. 497 - 506 (2007/10/03)
Continuing our work on tetracyclic tacrine analogues, we synthesized a series of acetylcholinesterase (AChE) inhibitors of 11H-indeno-[1,2-b]-quinolin-10-ylaminic structure. Selected substituents were placed in synthetically accessible positions of the tetracyclic nucleus, in order to explore the structure-activity relationships (SAR) and the mode of action of this class of anticholinesterases. A molecular modeling investigation of the binding interaction of the lead compound (1a) with the AChE active site was performed, from which it resulted that, despite the rather wide and rigid structure of 1a, there may still be the possibility to introduce some small substituent in some positions of the tetracycle. However, from the examination of the experimental IC50 values, it derived that the indenoquinoline nucleus probably represents the maximum allowable molecular size for rigid compounds binding to AChE. In fact, only a fluorine atom in position 2 maintains the AChE inhibitory potency of the parent compound, and, actually, increases the AChE-selectivity with respect to the butyrylcholinesterase inhibition. By studying the kinetics of AChE inhibition for two representative compounds of the series, it resulted that the lead compound (1a) shows an inhibition of mixed type, binding to both the active and the peripheral sites, while the more sterically hindered analogue 2nScheme 1Reagents: (a) ZnCl2 reflux; (b) (1) benzaldehyde reflux, (2) NaBH4. seems to interact only at the external binding site of the enzyme. This finding seems particularly important in the context of Alzheimer's disease research in the light of recent observations showing that peripheral AChE inhibitors might decrease the aggregating effects of the enzyme on the β-amyloid peptide (βA). Copyright (C) 2000 Elsevier Science Ltd.
Substituent effects on the kinetics of reductively-initiated fragmentation of nitrobenzyl carbamates designed as triggers for bioreductive prodrugs
Hay, Michael P.,Sykes, Bridget M.,Denny, William A.,O'Connor, Charmian J.
, p. 2759 - 2770 (2007/10/03)
4-Nitrobenzyl carbamates are of interest as triggers for bioreductive drugs, particularly in conjunction with the E. coli B nitroreductase, which efficiently reduces them to the corresponding hydroxylamines. These then fragment to release highly toxic amine-based toxins. While many 4-nitrobenzyl carbamate derivatives have been evaluated as bioreductive drugs, there has been no systematic study of substituent effects on the rate of this fragmentation (which should be as fast as possible following reduction). We therefore prepared a series of 2-, 3- and α-substituted 4-[N-methyl-N-(4-nitrobenzyloxycarbonyl)amino]phenylacetamides as model compounds to study these effects. The majority of the carbamates were prepared by in situ formation of the chloroformate of the appropriate 4-nitrobenzyl alcohol and reaction with methyl 4-(methylamino)phenylacetate, followed by ester hydrolysis and 1,1′-carbonyl-diimidazole (CDI) mediated coupling with N,N-dimethylaminoethylamine. The hydroxylamines were generated by 60Co γ-ray irradiation of the nitro compounds in aqueous phosphate-buffered-propan-2-ol. The reactions were analysed by reverse-phase HPLC to determine the maximum half-life (Mt1/2) of the hydroxylamines generated, and the extent of release of amine from these after 10 half-lives (t∞). The parent (unsubstituted) hydroxylaminobenzyl carbamate had a Mt1/2 of 16 min under these conditions, while that of the corresponding α-methyl analogue was 9.5 min. Electron-donating substituents on the benzyl ring also accelerated fragmentation, with the data being fitted to the equation log(Mt1/2) = 0.57σ + 1.30, where σ represents σp for 2-substituents and σm for 3-substituents. The acceleration of fragmentation of the hydroxylamines with increasing substituent electron-donation is consistent with the proposed mechanism, and is presumably due to stabilisation of the developing positive charge on the benzylic carbon. The extent of release of amine (t∞) also increased with increasing substituent electron-donation. These data suggest that the standard 4-nitrobenzyl carbamate trigger for nitroreductase enzyme (NTR) prodrugs can likely be improved on, by increasing the rate of fragmentation by the use of α-methyl and/or electron-donating benzyl substituents. The Royal Society of Chemistry 1999.