631921-83-0Relevant articles and documents
Difluoro complexes of platinum(II) and -(IV) with monodentate phosphine ligands: An exceptional stability of d6 octahedral organometallic fluorides
Yahav, Anette,Goldberg, Israel,Vigalok, Arkadi
, p. 1547 - 1553 (2008/10/09)
Complexes (R3P)2PtF2 were prepared by reaction of the corresponding diiodo precursors with AgF in dichloromethane. The intermediate formation of trans- and cis-(R3P)2Pt(I)F was also observed. All fluoro complexes demonstrate a strong preference for the cis-configuration (R = Ph or Et) unless a bulky phosphine ligand is used (R = i-Pr), in which case the trans complex was observed. The Pt(IV) difluoro compounds (R3P)2Ar2PtF2 were obtained by reacting the Pt(II) diaryl precursors with XeF2. The fluoro ligands are located in the trans-position relative to the aryl groups in the overall octahedral environment. The representative Pt(II) and Pt(IV) difluoro complexes were characterized by X-ray crystallography. All fluoro compounds react rapidly with chlorotrimethylsilane to give the corresponding chloro complexes. The Pt(IV) difluorides are remarkably stable in the C-C reductive elimination reaction, relative to their dichloro analogs which reductively eliminate diaryl within several hours at 45°C in N-methylpyrrolidone. It was found that phosphine dissociation from the octahedral Pt(IV) complex is essential for the reductive elimination reaction to take place, the difluoro complex being kinetically stable even at 60°C.
Synthesis of the Elusive (R3P)2MF2 (M = Pd, Pt) Complexes
Yahav, Anette,Goldberg, Israel,Vigalok, Arkadi
, p. 13634 - 13635 (2007/10/03)
The synthesis and characterization of previously unknown palladium(II) and platinum(II) difluoro phosphine complexes are described. These complexes can be obtained either via a halide metathesis reaction with AgF in dichloromethane or by reacting the corresponding dimethyl complexes with XeF2. While the Pt(II) complexes can be prepared with both aryl- and alkyl-phosphine ligands, the stability of the Pd(II) complexes is limited to those having cis-oriented trialkyl phosphine ligands. Copyright