6516-09-2Relevant articles and documents
Chiral Imidazo[1,5- a]pyridine-Oxazolines: A Versatile Family of NHC Ligands for the Highly Enantioselective Hydrosilylation of Ketones
Chinna Ayya Swamy,Varenikov, Andrii,Ruiter, Graham De
supporting information, p. 247 - 257 (2020/02/04)
Herein we report the synthesis and application of a versatile class of N-heterocyclic carbene ligands based on an imidazo[1,5-a]pyridine-3-ylidine backbone that is fused to a chiral oxazoline auxiliary. The key step in the synthesis of these ligands involves the installation of the oxazoline functionality via a microwave-assisted condensation of a cyano-azolium salt with a wide variety of 2-amino alcohols. The resulting chiral bidentate NHC-oxazoline ligands form stable complexes with rhodium(I) that are efficient catalysts for the enantioselective hydrosilylation of structurally diverse ketones. The corresponding secondary alcohols are isolated in good yields (typically >90%) with good to excellent enantioselectivities (80-93% ee). The reported hydrosilylation occurs at ambient temperatures (40 °C), with excellent functional group tolerability. Even ketones bearing heterocyclic substituents (e.g., pyridine or thiophene) or complex organic architectures are hydrosilylated efficiently, which is discussed further in this report.
C1-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model
Zeng, Liyao,Yang, Huaxin,Zhao, Menglong,Wen, Jialin,Tucker, James H. R.,Zhang, Xumu
, p. 13794 - 13799 (2020/11/30)
A family of ferrocene-based chiral PNP ligands is reported. These tridentate ligands were successfully applied in Mn-catalyzed asymmetric hydrogenation of ketones, giving high enantioselectivities (92%~99% ee for aryl alkyl ketones) as well as high efficiencies (TON up to 2000). In addition, dialkyl ketones could also be hydrogenated smoothly. Manganese intermediates that might be involved in the catalytic cycle were analyzed. DFT calculation was carried out to help understand the chiral induction model. The Mn/PNP catalyst could discriminate two groups with different steric properties by deformation of the phosphine moiety in the flexible 5-membered ring.
Manganese Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using Chiral Oxamide Ligands
Schneek?nig, Jacob,Junge, Kathrin,Beller, Matthias
supporting information, p. 503 - 507 (2019/02/26)
The asymmetric transfer hydrogenation of ketones using isopropyl alcohol (IPA) as hydrogen donor in the presence of novel manganese catalysts is explored. The selective and active systems are easily generated in situ from [MnBr(CO)5] and inexpensive C2-symmeric bisoxalamide ligands. Under the optimized reaction conditions, the Mn-derived catalyst gave higher enantioselectivity compared with the related ruthenium catalyst.
Enantioselective Hydrogenation of Ketones using Different Metal Complexes with a Chiral PNP Pincer Ligand
Garbe, Marcel,Wei, Zhihong,Tannert, Bianca,Spannenberg, Anke,Jiao, Haijun,Bachmann, Stephan,Scalone, Michelangelo,Junge, Kathrin,Beller, Matthias
supporting information, p. 1913 - 1920 (2019/03/13)
The synthesis of different metal pincer complexes coordinating to the chiral PNP ligand bis(2-((2R,5R)-2,5-dimethyl-phospholanoethyl))amine is described in detail. The characterized complexes with Mn, Fe, Re and Ru as metal centers showed good activities regarding the reduction of several prochiral ketones. Comparing these catalysts, the non-noble metal complexes produced best selectivities not only for aromatic substrates, but also for different kinds of aliphatic ones leading to enantioselectivities up to 99% ee. Theoretical investigations elucidated the mechanism and rationalized the selectivity. (Figure presented.).
Biocatalytic Racemization Employing TeSADH: Substrate Scope and Organic Solvent Compatibility for Dynamic Kinetic Resolution
Pop?oński, Jaros?aw,Reiter, Tamara,Kroutil, Wolfgang
, p. 763 - 768 (2018/02/27)
Racemization in combination with a kinetic resolution is the base for a dynamic kinetic resolution (DKR). Biocatalytic racemization was successfully performed for a broad scope of sec-alcohols by employing a single alcohol dehydrogenase (ADH) variant from Thermoanaerobacter pseudoethanolicus (formerly T. ethanolicus; TeSADH W110A I86A C295A). The catalyst employed as a lyophilized whole cell preparation or cell free extract, which tolerated various non-water miscible organic solvents under micro-aqueous or two-phase conditions, whereby cyclohexane and n-hexane suited best. Various concepts for combining the enzymatic racemization with an enzymatic kinetic resolution to achieve overall a bis-enzymatic DKR were evaluated. A proof of concept showed a successful DKR with racemization in aqueous phase combined with acylation in the organic phase.
Iridium and Rhodium Complexes Containing Enantiopure Primary Amine-Tethered N-Heterocyclic Carbenes: Synthesis, Characterization, Reactivity, and Catalytic Asymmetric Hydrogenation of Ketones
Wan, Kai Y.,Roelfes, Florian,Lough, Alan J.,Hahn, F. Ekkehardt,Morris, Robert H.
supporting information, p. 491 - 504 (2018/02/17)
The imidazolium salt [(S,S)-tBuNC3H3NCHPhCHPhNH2]PF6, (S,S)-11·HPF6 is a precursor to the enantiopure "Kaibene" ligand, tBu-Kaibene, (S,S)-11 featuring a tert-butyl group on the N-heterocyclic carbene (NHC) ring-nitrogen atoms. It has been prepared in high yield and purity by refluxing a chiral cyclic sulfamidate with 1-tert-butylimidazole. Similarly (S,S)-12·HPF6 with a mesityl group at the imidazolium ring-nitrogen atom has been prepared in the same fashion and serves as a source of Mes-Kaibene, (S,S)-12. These bidentate Kaibene ligands feature an NHC and a primary amine separated by a chiral linker. Salts (S,S)-11·HPF6 or (S,S)-12·HPF6 react with base and AgI or CuI to give a total of four M(Kaibene)2I compounds (M = Ag or Cu). At 22 °C, the amine-functionalized imidazolium cations undergo oxidative addition to iridium(I) in [IrCl(cod)]2 (cod = 1,5-cyclooctadiene) to generate iridium(III) hydride R-Kaibene compounds [IrHCl(cod)((S,S)-11)](PF6) (17) and [IrHCl(cod)((S,S)-12)](PF6) (18), respectively, each as a mixture of six configurational isomers. In contrast, the salt (S,S)-11·HPF6 reacts with [Ir(OtBu)(cod)]2 to produce a bimetallic iridium compound with (S,S)-11 as the bridging ligand. This compound contains interesting NH···Cl and NH···Ir noncovalent intramolecular interactions. Salt (S,S)-12·HPF6 reacts with silver oxide to yield [Ag2((S,S)-12)2](PF6)2 (20). Reagent 20 serves as an efficient transmetalation reagent to deliver to each rhodium in [RhCl(cod)]2 1 equiv of (S,S)-12 as a bidentate ligand to give [Rh(cod)((S,S)-12)](PF6). In the reaction between [IrCl(cod)]2 and 20, (S,S)-12 ends up coordinated in an iridium(III) hydride complex (22) as a tridentate ligand via the NHC, NH2, and a cyclometalated phenyl group. The two iridium hydride compounds, 18 and 22, are catalysts for the hydrogenation of a range of ketones (turnover number up to 499, turnover frequency up to 249 h-1, with er (enantiomeric ratio) up to 35:65 R:S).
CHIRAL METAL COMPLEX COMPOUNDS
-
Page/Page column 18; 19; 21; 24; 25, (2018/11/10)
The invention comprises novel chiral metal complex compounds of the formula (I) wherein M, PR2, R3 and R4 are outlined in the description, its stereoisomers, in the form as a neutral complex or a complex cation with a suitable counter ion. The chiral metal complex compounds can be used in asymmetric reactions, particularly in asymmetric reductions of ketones, imines or oximes.
Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands
Yu, Jianfei,Long, Jiao,Yang, Yuhong,Wu, Weilong,Xue, Peng,Chung, Lung Wa,Dong, Xiu-Qin,Zhang, Xumu
supporting information, p. 690 - 693 (2017/02/10)
A series of tridentate ferrocene-based amino-phosphine acid (f-Ampha) ligands have been successfully developed. The f-Ampha ligands are extremely air stable and exhibited excellent performance in the Ir-catalyzed asymmetric hydrogenation of ketones (full conversions, up to >99% ee, and 500?000 TON). DFT calculations were performed to elucidate the reaction mechanism and the importance of the COOH group. Control experiments also revealed that the COOH group played a key role in this reaction.
Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand
Garbe, Marcel,Junge, Kathrin,Walker, Svenja,Wei, Zhihong,Jiao, Haijun,Spannenberg, Anke,Bachmann, Stephan,Scalone, Michelangelo,Beller, Matthias
supporting information, p. 11237 - 11241 (2017/09/02)
A new chiral manganese PNP pincer complex is described. The asymmetric hydrogenation of several prochiral ketones with molecular hydrogen in the presence of this complex proceeds under mild conditions (30–40 °C, 4 h, 30 bar H2). Besides high catalytic activity for aromatic substrates, aliphatic ketones are hydrogenated with remarkable selectivity (e.r. up to 92:8). DFT calculations support an outer sphere hydrogenation mechanism as well as the experimentally determined stereochemistry.
Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones
Wu, Weilong,Liu, Shaodong,Duan, Meng,Tan, Xuefeng,Chen, Caiyou,Xie, Yun,Lan, Yu,Dong, Xiu-Qin,Zhang, Xumu
supporting information, p. 2938 - 2941 (2016/07/06)
A series of modular and rich electronic tridentate ferrocene aminophosphoxazoline ligands (f-amphox) have been successfully developed and used in iridium-catalytic asymmetric hydrogenation of simple ketones to afford corresponding enantiomerically enriched alcohols under mild conditions with superb activities and excellent enantioselectivities (up to 1"000"000 TON, almost all products up to >99% ee, full conversion). The resulting chiral alcohols and their derivatives are important intermediates in pharmaceuticals.