Welcome to LookChem.com Sign In|Join Free

CAS

  • or

65625-40-3

Post Buying Request

65625-40-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

65625-40-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 65625-40-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,5,6,2 and 5 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 65625-40:
(7*6)+(6*5)+(5*6)+(4*2)+(3*5)+(2*4)+(1*0)=133
133 % 10 = 3
So 65625-40-3 is a valid CAS Registry Number.

65625-40-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,3-dimethylbenzenesulfonamide

1.2 Other means of identification

Product number -
Other names Benzenesulfonamide,2,3-dimethyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:65625-40-3 SDS

65625-40-3Downstream Products

65625-40-3Relevant articles and documents

Kinetics and mechanism of oxidation of D-fructose and D-glucose by sodium salts of N-(chloro)-mono/di-substituted benzenesulfonamides in aqueous alkaline medium

Gowda, B. Thimme,Damodara,Jyothi

, p. 572 - 582 (2007/10/03)

In an effort to introduce N-chloroarylsulfonamides of different oxidizing strengths, nine sodium salts of mono- and di-substituted N- chloroarylsulfonamides are employed as oxidants for studying the kinetics of oxidation of D-fructose and D-glucose in aqueous alkaline medium. The results are analyzed along with those by the sodium salts of N-chlorobenzenesulfonamide and N-chloro-4-methylbenzenesulfonamide. The reactions show first-order kinetics each in [oxidant], [Fru/Glu], and [OH-]. The rates slightly increase with increase in ionic strength of the medium. Further, the rate of oxidation of fructose is higher by 4 to 5 times than that of the glucose oxidation, by the same oxidant. Similarly, Ea values for glucose oxidations are higher by about 1.5 times the Ea values for fructose oxidations. The results have been explained by a plausible mechanism, and the related rate law deduced. The significant changes in the kinetics and thermodynamic data are observed with change of substituent in the benzene ring. It is because Cl + is the effective oxidizing species in the reactions of N-chloroarylsulfonamides. The oxidative strengths of the latter therefore depend on the ease with which Cl+ is released from them. The ease with which Cl+ is released from N-chloroarylsulfonamides depends on the electron density of the nitrogen atom of the sulfonamide group, which in turn depends on the nature of the substituent in the benzene ring. The following Hammett equations are valid for the oxidation of fructose and glucose, log kobs = -3.13 + 0.54 σ ρ and log kobs = -3.81 + 0.28 σ ρ, respectively. The enthalpies and entropies of activations for oxidations by all the N-chloroarylsulfonamides correlate well with isokinetic temperatures of 301 K and 299 K, for fructose and glucose oxidations, respectively. The effect of substitution in the oxidants on the Ea and log A for the oxidations is also considered.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 65625-40-3