Welcome to LookChem.com Sign In|Join Free

CAS

  • or

67204-66-4

Post Buying Request

67204-66-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

67204-66-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 67204-66-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,7,2,0 and 4 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 67204-66:
(7*6)+(6*7)+(5*2)+(4*0)+(3*4)+(2*6)+(1*6)=124
124 % 10 = 4
So 67204-66-4 is a valid CAS Registry Number.
InChI:InChI=1/C18H28O3/c1-2-3-7-11-16-15(13-14-17(16)19)10-8-5-4-6-9-12-18(20)21/h3,7,13-16H,2,4-6,8-12H2,1H3,(H,20,21)

67204-66-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (15Z)-12-oxophyto-10,15-dienoic acid

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:67204-66-4 SDS

67204-66-4Relevant articles and documents

Biosynthesis of Jasmonates from Linoleic Acid by the Fungus Fusarium oxysporum. Evidence for a Novel Allene Oxide Cyclase

Oliw, Ernst H.,Hamberg, Mats

, p. 543 - 556 (2019/08/12)

Fusarium oxysporum f. sp. tulipae (FOT) secretes (+)-7-iso-jasmonoyl-(S)-isoleucine ((+)-JA-Ile) to the growth medium together with about 10 times less 9,10-dihydro-(+)-7-iso-JA-Ile. Plants and fungi form (+)-JA-Ile from 18:3n-3 via 12-oxophytodienoic acid (12-OPDA), which is formed sequentially by 13S-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase (AOC). Plant AOC does not accept linoleic acid (18:2n-6)-derived allene oxides and dihydrojasmonates are not commonly found in plants. This raises the question whether 18:2n-6 serves as the precursor of 9,10-dihydro-JA-Ile in Fusarium, or whether the latter arises by a putative reductase activity operating on the n-3 double bond of (+)-JA-Ile or one of its precursors. Incubation of pentadeuterated (d5) 18:3n-3 with mycelia led to the formation of d5-(+)-JA-Ile whereas d5-9,10-dihydro-JA-Ile was not detectable. In contrast, d5-9,10-dihydro-(+)-JA-Ile was produced following incubation of [17,17,18,18,18-2H5]linoleic acid (d5-18:2n-6). Furthermore, 9(S),13(S)-12-oxophytoenoic acid, the 15,16-dihydro analog of 12-OPDA, was formed upon incubation of unlabeled or d5-18:2n-6. Appearance of the α-ketol, 12-oxo-13-hydroxy-9-octadecenoic acid following incubation of unlabeled or [13C18]-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid confirmed the involvement of AOS and the biosynthesis of the allene oxide 12,13(S)-epoxy-9,11-octadecadienoic acid. The lack of conversion of this allene oxide by AOC in higher plants necessitates the conclusion that the fungal AOC is distinct from the corresponding plant enzyme.

Synthesis of 12-Oxophytodienoic Acid (12-OxoPDA) and the Compounds of its Enzymic Degradation Cascade in Plants, OPC-8:0, -6:0, -4:0 and -2:0 (epi-Jasmonic Acid), as their Methyl Esters

Crombie, Leslie,Mistry, Kamlesh M.

, p. 1981 - 1991 (2007/10/02)

The synthesis of 12-Oxophytodienoic acid, and the compounds of its enzymatic degradation sequence, OPC-8:0, -6:0, -4:0 and -2:0, important plant metabolites derived from linolenic acid, is reported.The syntheses use the known cyclopent-3-ene-1,2-diacetic acid as an early intermediate, and this is derived from the Cope rearrangement of 5-vinyltrinorborn-2-ene via bicyclonona-3,7-diene.Iodolactonisation and tributyltin hydride reduction provides the key intermediate (3-oxo-2-oxabicyclooctan-6-yl)acetic acid for the OPC series, whilstphenylselenolactonisation and elimination provides the necessary unsaturated lactone (7-oxo-8-oxabicyclooct-2-en-4-yl)acetic acid for 12-oxoPDA.Members of the OPC-series were made by chain extending the saturated oxabicyclooctane acid: that for the OPC-4:0 involved double Arndt-Eistert reaction, whilst the intermediates for OPC-6:0 and -8:0 were made by Kolbe anodic crossed coupling.The lactones were than converted via their lactols, Wittig reaction, esterfication and oxidation, into the compounds of the OPC ester series, including OPC-2:0 (methyl epi-jasmonate).The unsaturate lactone 8-(7-oxo-8-oxabicyclooct-2-en-4-yl)octanoic acid required for 12-oxoPDA synthesis could also be prepared by anodic synthesis either from (7-oxo-8-oxa-bicyclooct-2-en-4-yl)acetic acid, or from its 2-phenylseleno-2,3-dihydro precursor as elimination occurred concomitantly during the reaction.Since yields were low, the unsaturated acid lactone was converted into its lactol and the (Z)-pent-2-enyl side-chain was inserted first.After TBDMS blocking of the cyclopentene hydroxy group, the side-chain was elaborated to give5-(pent-2-enyl)cyclopent-2-enylacetaldehyde and chain extension carried out by a Grignard-demesylation procedure.Sequential desilylation and depyranylation, followed by oxidation of the diol, gave 12-oxoPDA, isolated as its methyl ester.

TOTAL SYNTHESIS OF (+/-)-DICRANENONES, NOVEL CYCLOPENTENONYL FATTY ACIDS

Sakai, Kunizaku,Fujimoto, Tamotsu,Yamashita, Mitsuo,Kondo, Kiyosi

, p. 2089 - 2092 (2007/10/02)

Dicranenones 1 and 2 have been synthesized from the intermediate 12, which was either derived from methyl jasmonate 7 or prepared by the intramolecular ring formation of diazo compound 14.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 67204-66-4