67321-81-7Relevant articles and documents
Structure-function relationships for electrocatalytic water oxidation by molecular [Mn12O12] clusters
Yan, Yong,Lee, John S.,Ruddy, Daniel A.
supporting information, p. 4550 - 4555 (2015/05/20)
A series of Mn12O12(OAc)16-xLx(H2O)4 molecular clusters (L = acetate, benzoate, benzenesulfonate, diphenylphosphonate, dichloroacetate) were electrocatalytically investigated as water oxidation electrocatalysts on a fluorine-doped tin oxide glass electrode. Four of the [Mn12O12] compounds demonstrated water oxidation activity at pH 7.0 at varying overpotentials (640-820 mV at 0.2 mA/cm2) and with high Faradaic efficiency (85-93%). For the most active complex, more than 200 turnovers were observed after 5 min. Two structure-function relationships for these complexes were developed. First, these complexes must undergo at least one-electron oxidation to become active catalysts, and complexes that cannot be oxidized in this potential window were inactive. Second, a greater degree of distortion at Mn1 and Mn3 centers correlated with higher catalytic activity. From this distortion analysis, either or both of these two Mn centers are proposed to be the catalytically active site.
Synthesis of water and molecular oxygen highly enriched in 17O and 18O isotopes from carbon oxides
Artyukhov,Kravets,Artyukhov,Babichev,Ryzhkov
, p. 335 - 337 (2011/08/22)
The reaction of carbon oxides and hydrogen in the presence of the Raney nickel catalyst has been used for water synthesis. A procedure has been developed for the recovery and collection of the synthesized water with minimal losses and without deteriorating the 17O or 18O isotope enrichment as compared to the initial CO2 and CO. The recovery of oxygen with high concentrations of 17O and 18O isotopes is based on the reaction of xenon difluoride with water. The yield based on oxygen achieves 99% without reduction of isotope enrichment, which is confirmed by mass-spectral measurements of oxygen isotope concentrations in the initial reagents and final reaction products. Pleiades Publishing, Ltd., 2011.