Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7326-46-7

Post Buying Request

7326-46-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7326-46-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7326-46-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,3,2 and 6 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 7326-46:
(6*7)+(5*3)+(4*2)+(3*6)+(2*4)+(1*6)=97
97 % 10 = 7
So 7326-46-7 is a valid CAS Registry Number.
InChI:InChI=1/C5H10O2/c1-5(6)3-2-4-7-5/h6H,2-4H2,1H3

7326-46-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-methyloxolan-2-ol

1.2 Other means of identification

Product number -
Other names Furanol,tetrahydromethyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7326-46-7 SDS

7326-46-7Relevant articles and documents

Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY Ni-Sn alloy catalysts

Ansyah, Fathur Razi,Astuti, Maria Dewi,Hara, Takayoshi,Husain, Sadang,Mustikasari, Kamilia,Rodiansono,Shimazu, Shogo

, p. 241 - 250 (2022/01/19)

Bimetallic Ni-Sn alloys have been recognised as promising catalysts for the transformation of furanic compounds and their derivatives into valuable chemicals. Herein, we report the utilisation of a supported bimetallic RANEY nickel-tin alloy supported on aluminium hydroxide (RNi-Sn(x)/AlOH; x is Ni/Sn molar ratio) catalysts for the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol (1,4-PeD). The as prepared RNi-Sn(1.4)/AlOH catalyst exhibited the highest yield of 1,4-PeD (78%). The reduction of RNi-Sn(x)/AlOH with H2 at 673-873 K for 1.5 h resulted in the formation of Ni-Sn alloy phases (e.g., Ni3Sn and Ni3Sn2) and caused the transformation of aluminium hydroxide (AlOH) to amorphous alumina (AA). The RNi-Sn(1.4)/AA 673 K/H2 catalyst contained a Ni3Sn2 alloy as the major phase, which exhibited the best yield of 1,4-PeD from furfural (87%) at 433 K, H2 3.0 MPa for 12 h and from levulinic acid (up to 90%) at 503 K, H2 4.0 MPa, for 12 h. Supported RANEY Ni-Sn(1.5)/AC and three types of supported Ni-Sn(1.5) alloy (e.g., Ni-Sn(1.5)/AC, Ni-Sn(1.5)/c-AlOH, and Ni-Sn(1.5)/γ-Al2O3) catalysts afforded high yields of 1,4-PeD (65-87%) both from furfural and levulinic acid under the optimised reaction conditions.

One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture

Rodiansono,Dewi Astuti, Maria,Hara, Takayoshi,Ichikuni, Nobuyuki,Shimazu, Shogo

supporting information, p. 2307 - 2315 (2019/05/21)

Inexpensive bulk Ni-Sn alloy-based catalysts demonstrated a unique catalytic property in the selective conversion of C5-furan compounds (e.g., furfuraldehyde (FFald), furfuryl alcohol (FFalc), and 2-methylfuran (2-MTF)) in an ethanol/H2O solvent mixture and selectively produced 1,4-pentanediol (1,4-PeD) in a one-pot reaction. The synergistic actions between the bulk Ni-Sn alloy catalyst, hydrogen gas, and the hydroxylated H2O or ethanol/H2O solvents are believed to play a prominent role in the catalytic reactions. Bulk Ni-Sn alloy catalysts that consisted of Ni3Sn or Ni3Sn2 alloy phases allowed an outstanding yield of 1,4-PeD up to 92% (from FFald), 67% (from FFalc), and 48% (from 2-MTF) in ethanol/H2O (1.5:2.0 volume ratio) at 433 K, 3.0 MPa H2 and 12 h. As the reaction temperature increased to 453 K, the yield of 1,4-PeD slightly decreased to 87% (from FFald), whereas it slightly increased to 71% (from FFalc). The bulk Ni-Sn alloy catalysts were reusable without any significant loss of selectivity.

Na4H3[SiW9Al3(H2O)3O37]·12H2O/H2O: a new system for selective oxidation of alcohols with H2O2 as oxidant

Wang, Jianmin,Yan, Liang,Qian, Guang,Li, Shunqing,Yang, Keli,Liu, Haitao,Wang, Xiaolai

, p. 1826 - 1832 (2007/10/03)

This work describes a catalytic system consisting of both Na4H3[SiW9Al3(H2O)3O37]·12H2O(SiW9Al3) and water as solvents (a?small quantity of organic solvents were used as co-solvent for a few substrates) that can be good for selective oxidation of alcohols to ketones (aldehydes) using 30% H2O2 without any phase-transfer catalyst under mild reaction conditions. The catalyst system allows easy product/catalyst separation. Under the given conditions, the secondary hydroxyl group was highly chemoselectively oxidized to the corresponding ketones in good yields in the presence of primary hydroxyl group within the same molecule, and hydroxides are selectively oxidized even in the presence of alkene. Benzylic alcohols were selectively oxidized to the corresponding benzaldehydes in good yields without over oxidation products in solvent-free conditions. Nitrogen, oxygen, sulfur-based moieties, at least for the cases where these atoms are not susceptible to oxidation, do not interfere with the catalytic alcohol oxidation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7326-46-7