Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7532-39-0

Post Buying Request

7532-39-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-2,2-dimethyl-3-[2-[2-(2-phenylacetyl)sulfanylethylcarbamoyl]ethylcarbamoyl]propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]ox

    Cas No: 7532-39-0

  • No Data

  • No Data

  • No Data

  • Cayman Chemical Company
  • Contact Supplier
  • [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[hydroxy-[hydroxy-[3-hydroxy-2,2-dimethyl-3-[2-[2-(2-phenylacetyl)sulfanylethylcarbamoyl]ethylcarbamoyl]propoxy]phosphoryl]oxy-phosphoryl]oxymethyl]ox

    Cas No: 7532-39-0

  • No Data

  • No Data

  • No Data

  • Shanghai Hongye Biotechnology Co. Ltd
  • Contact Supplier

7532-39-0 Usage

Uses

Phenylacetyl CoA is a derivative of Coenzyme A (C636400). Phenylacetyl CoA is utilized by the Bacillus Subtillis enzyme Sfp to transfer acyl phosphopantetheinyl moieties into the carrier protein substrate during the production of lipoheptapeptide antibiotic surfactin.

Definition

ChEBI: An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of phenylacetic acid.

Enzyme inhibitor

This arylacyl coenzyme A derivative (FW = 785.67 g/mol) is a product of phenylacetyl-CoA synthetase and a substrate for glutamine Nphenylacetyltransferase and isopenicillin N N-acyltransferase. Target(s): choline O-acetyltransferase; glycine acyltransferase; and glycine Nbenzoyltransferase.

Check Digit Verification of cas no

The CAS Registry Mumber 7532-39-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,5,3 and 2 respectively; the second part has 2 digits, 3 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 7532-39:
(6*7)+(5*5)+(4*3)+(3*2)+(2*3)+(1*9)=100
100 % 10 = 0
So 7532-39-0 is a valid CAS Registry Number.
InChI:InChI=1/C29H42N7O17P3S/c1-29(2,24(40)27(41)32-9-8-19(37)31-10-11-57-20(38)12-17-6-4-3-5-7-17)14-50-56(47,48)53-55(45,46)49-13-18-23(52-54(42,43)44)22(39)28(51-18)36-16-35-21-25(30)33-15-34-26(21)36/h3-7,15-16,18,22-24,28,39-40H,8-14H2,1-2H3,(H,31,37)(H,32,41)(H,45,46)(H,47,48)(H2,30,33,34)(H2,42,43,44)/t18-,22-,23-,24+,28-/m1/s1

7532-39-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name phenylacetyl-CoA

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7532-39-0 SDS

7532-39-0Relevant articles and documents

Structural and Mechanistic Basis of an Oxepin-CoA Forming Isomerase in Bacterial Primary and Secondary Metabolism

Saleem-Batcha, Raspudin,Spieker, Melanie,Teufel, Robin

, (2019/12/02)

Numerous aromatic compounds are aerobically degraded in bacteria via the central intermediate phenylacetic acid (paa). In one of the key steps of this widespread catabolic pathway, 1,2-epoxyphenylacetyl-CoA is converted by PaaG into the heterocyclic oxepin-CoA. PaaG thereby elegantly generates an α,β-unsaturated CoA ester that is predisposed to undergo β-oxidation subsequent to hydrolytic ring-cleavage. Moreover, oxepin-CoA serves as a precursor for secondary metabolites (e.g., tropodithietic acid) that act as antibiotics and quorum-sensing signals. Here we verify that PaaG adopts a second role in aromatic catabolism by converting cis-3,4-didehydroadipoyl-CoA into trans-2,3-didehydroadipoyl-CoA and corroborate a δ3,δ2-enoyl-CoA isomerase-like proton shuttling mechanism for both distinct substrates. Biochemical and structural investigations of PaaG reveal active site adaptations to the structurally different substrates and provide detailed insight into catalysis and control of stereospecificity. This work elucidates the mechanism of action of unusual isomerase PaaG and sheds new light on the ubiquitous enoyl-CoA isomerases of the crotonase superfamily.

Establishing a toolkit for precursor-directed polyketide biosynthesis: Exploring substrate promiscuities of acid-CoA ligases

Go, Maybelle Kho,Chow, Jeng Yeong,Cheung, Vivian Wing Ngar,Lim, Yan Ping,Yew, Wen Shan

experimental part, p. 4568 - 4579 (2012/08/28)

Polyketides are chemically diverse and medicinally important biochemicals that are biosynthesized from acyl-CoA precursors by polyketide synthases. One of the limitations to combinatorial biosynthesis of polyketides has been the lack of a toolkit that describes the means of delivering novel acyl-CoA precursors necessary for polyketide biosynthesis. Using five acid-CoA ligases obtained from various plants and microorganisms, we biosynthesized an initial library of 79 acyl-CoA thioesters by screening each of the acid-CoA ligases against a library of 123 carboxylic acids. The library of acyl-CoA thioesters includes derivatives of cinnamyl-CoA, 3-phenylpropanoyl-CoA, benzoyl-CoA, phenylacetyl-CoA, malonyl-CoA, saturated and unsaturated aliphatic CoA thioesters, and bicyclic aromatic CoA thioesters. In our search for the biosynthetic routes of novel acyl-CoA precursors, we discovered two previously unreported malonyl-CoA derivatives (3-thiophenemalonyl-CoA and phenylmalonyl-CoA) that cannot be produced by canonical malonyl-CoA synthetases. This report highlights the utility and importance of determining substrate promiscuities beyond conventional substrate pools and describes novel enzymatic routes for the establishment of precursor-directed combinatorial polyketide biosynthesis. (Chemical Presented).

Isolation from bovine liver mitochondria and characterization of three distinct carboxylic acid: CoA ligases with activity toward xenobiotics.

Vessey,Hu

, p. 329 - 337 (2007/10/03)

A mitochondrial freeze/thaw lysate was fractionated on a DEAE-cellulose column into four distinct acyl-CoA ligase fractions. First to elute was a 50 kDa short-chain ligase that activated only short-chain fatty acids. Next to elute were three ligases that had activity toward both medium-chain fatty acids and xenobiotic carboxylic acids; these were termed xenobiotic/medium-chain ligases (X-ligases) and labeled XL-I, XL-II, and XL-III, respectively, based on order of elution. The molecular weight of X-ligases I, II, and III were ca. 55,000, 55,500 and 53,000, respectively. Form XL-III showed no pH optimum; the rate increased steadily with pH beginning from pH 7.0. XL-I and XL-II showed the same behavior with benzoate as substrate, but with medium-chain fatty acids, both forms had a pH optimum at 8.8. The three X-ligases differed in substrate specificity. XL-I was the predominant nicotinic acid activating form and had the lowest Km for benzoate. Form XL-II was the only form with measurable salicylate activity, although it was extremely low. XL-III was the only 2,4,6,8-decatetraenoic acid activating form and also was the predominant medium-chain fatty acid-activating form. By comparison of substrate specificities, it was concluded that the two previously reported ligase preparations were mixtures of the three forms. When the ligase rates were compared to previously determined N-acyltransferase rates toward benzoyl-CoA and phenylacetyl-CoA, the data showed that ligase activities are 100-fold lower, and thus the ligase is rate limiting for the conjugation of both of these xenobiotics.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7532-39-0