795278-91-0Relevant articles and documents
Pd-Catalyzed ipso, meta-Dimethylation of ortho-Substituted Iodoarenes via a Base-Controlled C-H Activation Cascade with Dimethyl Carbonate as the Methyl Source
Wu, Zhuo,Wei, Feng,Wan, Bin,Zhang, Yanghui
supporting information, p. 4524 - 4530 (2021/05/04)
A methyl group can have a profound impact on the pharmacological properties of organic molecules. Hence, developing methylation methods and methylating reagents is essential in medicinal chemistry. We report a palladium-catalyzed dimethylation reaction of ortho-substituted iodoarenes using dimethyl carbonate as a methyl source. In the presence of K2CO3 as a base, iodoarenes are dimethylated at the ipso- and meta-positions of the iodo group, which represents a novel strategy for meta-C-H methylation. With KOAc as the base, subsequent oxidative C(sp3)-H/C(sp3)-H coupling occurs; in this case, the overall transformation achieves triple C-H activation to form three new C-C bonds. These reactions allow expedient access to 2,6-dimethylated phenols, 2,3-dihydrobenzofurans, and indanes, which are ubiquitous structural motifs and essential synthetic intermediates of biologically and pharmacologically active compounds.
Construction of Condensed Polycyclic Aromatic Frameworks through Intramolecular Cycloaddition Reactions Involving Arynes Bearing an Internal Alkyne Moiety
Yoshida, Suguru,Shimizu, Keita,Uchida, Keisuke,Hazama, Yuki,Igawa, Kazunobu,Tomooka, Katsuhiko,Hosoya, Takamitsu
, p. 15332 - 15335 (2017/10/18)
Facile synthetic methods for condensed polycyclic aromatic compounds via aryne intermediates are reported. The generation of arynes bearing a (3-arylpropargyl)oxy group from the corresponding o-iodoaryl triflate-type precursors efficiently afforded arene-fused oxaacenaphthene derivatives, which were formed through intramolecular [2+4] cycloaddition. Extending the method to the generation of arynes bearing a 1,3-diyne moiety led to a continuous generation of naphthalyne intermediate through the hexadehydro Diels–Alder reaction involving the aryne triple bond. This novel type of aryne-relay chemistry enabled the synthesis of a unique aminoarylated oxaacenaphthene derivative and highly ring-fused anthracene derivatives.
Computed CH acidity of biaryl compounds and their deprotonative metalation by using a mixed lithium/Zinc-TMP base
Kadiyala, Raghu Ram,Tilly, David,Nagaradja, Elisabeth,Roisnel, Thierry,Matulis, Vadim E.,Ivashkevich, Oleg A.,Halauko, Yury S.,Chevallier, Floris,Gros, Philippe C.,Mongin, Florence
supporting information, p. 7944 - 7960 (2013/07/05)
With the aim of synthesizing biaryl compounds, several aromatic iodides were prepared by the deprotonative metalation of methoxybenzenes, 3-substituted naphthalenes, isoquinoline, and methoxypyridines by using a mixed lithium/zinc-TMP (TMP=2,2,6,6-tetramethylpiperidino) base and subsequent iodolysis. The halides thus obtained, as well as commercial compounds, were cross-coupled under palladium catalysis (e.g., Suzuki coupling with 2,4-dimethoxy-5-pyrimidylboronic acid) to afford various representative biaryl compounds. Deprotometalation of the latter compounds was performed by using the lithium/zinc-TMP base and evaluated by subsequent iodolysis. The outcome of these reactions has been discussed in light of the CH acidities of these substrates, as determined in THF solution by using the DFT B3LYP method. Except for in the presence of decidedly lower pKa values, the regioselectivities of the deprotometalation reactions tend to be governed by nearby coordinating atoms rather than by site acidities. In particular, azine and diazine nitrogen atoms have been shown to be efficient in inducing the reactions with the lithium/zinc-TMP base at adjacent sites (e.g., by using 1-(2-methoxyphenyl)isoquinoline, 4-(2,5-dimethoxyphenyl)-3-methoxypyridine, or 5-(2,5-dimethoxyphenyl)-2,4-dimethoxypyrimidine as the substrate), a behavior that has already been observed upon treatment with lithium amides under kinetic conditions. Finally, the iodinated biaryl derivatives were involved in palladium-catalyzed reactions. Copyright
An aluminum ate base: Its design, structure, function, and reaction mechanism
Naka, Hiroshi,Uchiyama, Masanobu,Matsumoto, Yotaro,Wheatley, Andrew E. H.,McPartlin, Mary,Morey, James V.,Kondo, Yoshinori
, p. 1921 - 1930 (2007/10/03)
An aluminum ate base, i-Bu3Al(TMP)Li, has been designed and developed for regio- and chemoselective direct generation of functionalized aromatic aluminum compounds. Direct alumination followed by electrophilic trapping with I2, Cu/Pd-catalyzed C-C bond formation, or direct oxidation with molecular O2 proved to be a powerful tool for the preparation of 1,2- or 1,2,3-multisubstituted aromatic compounds. This deprotonative alumination using i-Bu3Al(TMP)Li was found to be effective in aliphatic chemistry as well, enabling regio- and chemoselective addition of functionalized allylic ethers and carbamates to aliphatic and aromatic aldehydes. A combined multinuclear NMR spectroscopy, X-ray crystallography, and theoretical study showed that the aluminum ate base is a Li/Al bimetallic complex bridged by the nitrogen atom of TMP and the α-carbon of an i-Bu ligand and that the Li exclusively serves as a recognition point for electronegative functional groups or coordinative solvents. The mechanism of directed ortho alumination reaction of functionalized aromatic compounds has been studied by NMR and in situ FT-IR spectroscopy, X-ray analysis, and DFT calculation. It has been found that the reaction proceeds with facile formation of an initial adduct of the base and aromatic, followed by deprotonative formation of the functionalized aromatic aluminum compound. Deprotonation by the TMP ligand rather than the isobutyl ligand was suggested and reasoned by means of spectroscopic and theoretical study. The remarkable regioselectivity of the ortho alumination reaction was explained by a coordinative approximation effect between the functional groups and the counter Li+ ion, enabling stable initial complex formation and creation of a less strained transition state structure.
Effective and regioselective iodination of arenes using iron(III) nitrate in the presence of tungstophosphoric acid
Jafarzadeh, Mohammad,Amani, Kamal,Nikpour, Farzad
, p. 1808 - 1811 (2007/10/03)
An easy, cheap, and effective method for iodination of various aromatic compounds takes place with molecular iodine and iron nitrate nonahydrate as the oxidant in the presence of a catalytic amount of tungstophosphoric acid in dichloromethane, with good yield and high regioselectivity under very mild conditions.