Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate, also known as quinoline carboxylic acid ester, is a chemical compound with the molecular formula C13H12ClNO3. It is a derivative of quinoline, known for its potential biological and pharmacological activities, including antimalarial, anti-inflammatory, and anticancer properties. ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate serves as an intermediate in the synthesis of various pharmaceuticals and has a wide range of applications in the pharmaceutical industry, making it a subject of ongoing research for its potential medicinal uses.

79607-22-0

Post Buying Request

79607-22-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

79607-22-0 Usage

Uses

Used in Pharmaceutical Industry:
Ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate is used as an intermediate in the synthesis of various pharmaceuticals for its potential biological and pharmacological activities.
Used in Antimalarial Applications:
Ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate is used as an antimalarial agent, leveraging its potential to combat malaria-causing parasites.
Used in Anti-inflammatory Applications:
ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate is used as an anti-inflammatory agent, harnessing its properties to reduce inflammation and associated symptoms.
Used in Anticancer Applications:
Ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate is used as an anticancer agent, contributing to the development of treatments that target and inhibit the growth of cancer cells.
As a research interest, ethyl 6-chloro-1,4-dihydro-4-oxoquinoline-3-carboxylate continues to be explored for additional medicinal applications, given its diverse pharmacological profile.

Check Digit Verification of cas no

The CAS Registry Mumber 79607-22-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,9,6,0 and 7 respectively; the second part has 2 digits, 2 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 79607-22:
(7*7)+(6*9)+(5*6)+(4*0)+(3*7)+(2*2)+(1*2)=160
160 % 10 = 0
So 79607-22-0 is a valid CAS Registry Number.

79607-22-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethyl 6-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate

1.2 Other means of identification

Product number -
Other names Ethyl 6-chloro-4-oxo-1,4-dihydro-3-quinolinecarboxylate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:79607-22-0 SDS

79607-22-0Relevant articles and documents

GABAa receptor ligands often interact with binding sites in the transmembrane domain and in the extracellular domain—can the promiscuity code be cracked?

Ernst, Margot,Iorio, Maria Teresa,Koniuszewski, Filip,Mihovilovic, Marko D.,Rehman, Sabah,Schnürch, Michael,Scholze, Petra,Simeone, Xenia,Vogel, Florian Daniel

, (2020/02/13)

Many allosteric binding sites that modulate gamma aminobutyric acid (GABA) effects have been described in heteropentameric GABA type A (GABAA) receptors, among them sites for benzodiazepines, pyrazoloquinolinones and etomidate. Diazepam not only binds at the high affinity extracellular “canonical” site, but also at sites in the transmembrane domain. Many ligands of the benzodiazepine binding site interact also with homologous sites in the extracellular domain, among them the pyrazoloquinolinones that exert modulation at extracellular α+/β? sites. Additional interaction of this chemotype with the sites for etomidate has also been described. We have recently described a new indole‐based scaffold with pharmacophore features highly similar to pyrazoloquinolinones as a novel class of GABAA receptor modulators. Contrary to what the pharmacophore overlap suggests, the ligand presented here behaves very differently from the identically substituted pyrazoloquinolinone. Structural evidence demonstrates that small changes in pharmacophore features can induce radical changes in ligand binding properties. Analysis of published data reveals that many chemotypes display a strong tendency to interact promiscuously with binding sites in the transmembrane domain and others in the extracellular domain of the same receptor. Further structural investigations of this phenomenon should enable a more targeted path to less promiscuous ligands, potentially reducing side effect liabilities.

Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors

Marra, Roberta K.F.,Kümmerle, Arthur E.,Guedes, Guilherme P.,Barros, Caroline de S.,Gomes, Rafaela S.P.,Cirne-Santos, Claudio C.,Paix?o, Izabel Christina N.P.,Neves, Amanda P.

, (2019/12/25)

This work reports the synthesis of quinolone-N-acylhydrazone hybrids, namely 6-R-N'-(2-hydxoxybenzylidene)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (R = H: 5a, F: 5b, Cl: 5c and Br: 5d), which exhibited excellent activity against arbovirus Zika (ZIKV) and Chikungunya (CHIKV). In vitro screening towards ZIKV and CHIKV inhibition revealed that all substances have significant antiviral activity, most of them being more potent than standard Ribavirin (5a-d: EC50 = 0.75–0.81 μM, Ribavirin: EC50 = 3.95 μM for ZIKV and 5a-d: 1.16–2.85 μM, Ribavirin: EC50 = 2.42 μM for CHIKV). The quinolone-N-acylhydrazone hybrids were non-toxic against Vero cells, in which compounds 5c and 5d showed the best selectivities (SI = 1410 and 630 against ZIKV and CHIKV, respectively). Antiviral activity was identified by inhibition of viral RNA production in a dose-dependent manner. In the evaluation of the time of addition of the compounds, we observed that 5b and 5c remain with strong effect even in the addition for 12 h after infection. The above results indicate that quinolone-N-acylhydrazones represent a new and promising class to be further investigated as anti-ZIKV and anti-CHIKV agents.

Design, synthesis, in vitro and in silico studies of novel 4-oxoquinoline ribonucleoside derivatives as HIV-1 reverse transcriptase inhibitors

Forezi, Luana da S.M.,Ribeiro, Mariana M.J.,Marttorelli, Andressa,Abrantes, Juliana L.,Rodrigues, Carlos R.,Castro, Helena Carla,Souza, Thiago Moreno L.,Boechat, Fernanda da C.S.,de Souza, Alessandra M.T.,de Souza, Maria Cecília B.V.

, (2020/04/02)

Human immunodeficiency virus type 1 (HIV-1) is a public health problem that affects over 38 million people worldwide. Although there are highly active antiretroviral therapies, emergence of antiviral resistant strains is a problem which leads to almost a million death annually. Thus, the development of new drugs is necessary. The viral enzyme reverse transcriptase (RT) represents a validated therapeutic target. Because the oxoquinolinic scaffold has substantial biological activities, including antiretroviral, a new series of 4-oxoquinoline ribonucleoside derivatives obtained by molecular hybridization were studied here. All synthesized compounds were tested against human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT), and 9a and 9d displayed the highest antiviral activities, with IC50 values of 1.4 and 1.6 μM, respectively. These compounds were less cytotoxic than AZT and showed CC50 values of 1486 and 1394 μM, respectively. Molecular docking studies showed that the most active compounds bound to the allosteric site of the enzyme, suggesting a low susceptibility to the development of antiviral resistance. In silico pharmacokinetic and toxicological evaluations reinforced the potential of the active compounds as anti-HIV candidates for further exploration. Overall, this work showed that compounds 9a and 9d are promising scaffold for future anti-HIV-1 RT drug design.

3-(Benzo[: D] thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase i inhibitor via DNA intercalation: Design, synthesis, and antitumor activities

Chen, Nan-Ying,Gu, Zi-Yu,Li, Xiao-Juan,Liao, Hao-Ran,Mo, Dong-Liang,Pan, Cheng-Xue,Su, Gui-Fa,Yuan, Jing-Mei,Zhang, Guo-Hai

, p. 11203 - 11214 (2020/07/15)

Twenty-seven 3-(benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives have been designed and synthesized as topoisomerase I inhibitors. The in vitro anti-proliferation evaluation against four human cancer cell lines (MGC-803, HepG-2, T24, and NCI-H460) and one normal cell line (HL-7702) indicated that most of them exhibited potent cytotoxicity. Among them, 5a was identified as the most promising candidate with a low IC50 value of about 2.20 ± 0.14 and was selected for further exploration. Spectroscopic analyses and agarose-gel electrophoresis assays indicated that 5a could interact with DNA and strongly inhibit topoisomerase I (Topo I). Further screening of the Topo I activity of compounds 5b, 5c, 5e, 5f, 5h, 5i, 5j, 5l, and 5n suggested that some of the compounds might exert quite a different cytotoxicity profile to that of 5a. Molecular modeling studies confirmed that 5a adopts a unique mode to interact with DNA and Topo I. Other molecular mechanistic studies suggested that the treatment of MGC-803 cells with 5a induces S phase arrest, up-regulates the pro-apoptotic protein, down-regulates the anti-apoptotic protein, activates caspase-3, and subsequently induces mitochondrial dysfunction so as to induce cell apoptosis. The in vivo efficiency of 5a was also evaluated on MGC-803 xenograft nude mice and the relative tumor growth inhibition was 42.4percent at 12 mg kg-1 without an obvious loss in the body weight. This journal is

Conjugate Addition Routes to 2-Alkyl-2,3-dihydroquinolin-4(1H)-ones and 2-Alkyl-4-hydroxy-1,2-dihydroquinoline-3-carboxylates

Kingsbury, Alex,Brough, Steve,McCarthy, Antonio Pedrina,Lewis, William,Woodward, Simon

supporting information, p. 1011 - 1017 (2019/12/27)

Under CuBr·SMe2/PPh3 catalysis (5/10 mol-%) RMgCl (R = Me, Et, nPr, CH=CH2, nBu, iBu, nC5H11, cC6H11, Bn, CH2Bn, nC11H23) readily (–78 °C) undergo 1,4-addition to Cbz or Boc protected quinolin-4(1H)-ones to provide 2-alkyl-2,3-dihydroquinolin-4(1H)-ones (14 examples, 54–99 % yield). Asymmetric versions require AlEt3 to Boc-protected ethyl 6-substituted 4(1H)-quinolone-3-carboxylates (6-R group = all halogens, n/i/t-alkyls, CF3) and provide 61–91 % yield, 30–86 % ee; any halogen, Me, or CF3 provide the highest stereoselectivities (76–86 % ee). Additions of AlMe3 or Al(nC8H17)3 provide ≈ 45 and ≈ 75 % ee on addition to the parent (6-R = H). Ligand (S)-(BINOL)P–N(CHPh2)(cC6H11) provides the highest ee values engendering addition to the Si face of the 4(1H)-quinolone-3-carboxylate. Allylation and deprotection of a representative 1,4-addition product example confirm the facial selectivity (X-ray crystallography).

Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents

Alsayed, Shahinda S. R.,Beh, Chau Chun,Bishai, William R.,Foster, Neil,Gunosewoyo, Hendra,Lun, Shichun,Luna, Giuseppe,Payne, Alan D.

, p. 7523 - 7540 (2020/03/13)

Our group has previously reported several indolecarboxamides exhibiting potent antitubercular activity. Herein, we rationally designed several arylcarboxamides based on our previously reported homology model and the recently published crystal structure of the mycobacterial membrane protein large 3 (MmpL3). Many analogues showed considerable anti-TB activity against drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) strain. Naphthamide derivatives 13c and 13d were the most active compounds in our study (MIC: 6.55, 7.11 μM, respectively), showing comparable potency to the first line anti-tuberculosis (anti-TB) drug ethambutol (MIC: 4.89 μM). In addition to the naphthamide derivatives, we also identified the quinolone-2-carboxamides and 4-arylthiazole-2-carboxamides as potential MmpL3 inhibitors in which compounds 8i and 18b had MIC values of 9.97 and 9.82 μM, respectively. All four compounds retained their high activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb strains. It is worth noting that the two most active compounds 13c and 13d also exhibited the highest selective activity towards DS, MDR and XDR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 227 μM], indicating their potential lack of cytotoxicity. The four compounds were docked into the MmpL3 active site and were studied for their drug-likeness using Lipinski's rule of five.

Antiviral activity of 4-oxoquinoline-3-carboxamide derivatives against bovine herpesvirus type 5

Pinto, Ana Maria V.,Leite, José Paulo G.,Marinho, Robson S.S.,Forezi, Luana da S.M.,Batalha, Pedro N.,Boechat, Fernanda da C.S.,Cunha, Anna C.,Silva, David O.,Gama, Ivson L.,Faro, Letícia V.,de Souza, Maria C.B.V.,Paix?o, Izabel Christina P.

, p. 13 - 20 (2020/10/21)

Background: Bovine herpesvirus type 5 is an important agent of meningoencephalitis in cattle and has been identified in outbreaks of bovine neurological disease in several Brazilian states. In recent years, oxoquinoline derivatives have become an important focus in antiviral drug research. Methods: The cytotoxicity and anti BoHV-5RJ42/01 activity of a set of synthetic 4-oxoquinoline derivatives 4a-k were assayed on Madin-Darby Bovine Kidney cell and antiviral activity by plaque reduction assay. Results: The most promising substance (4h) exhibited CC50 and EC50 values of 1,239 μM ±5.5 and 6.0 μM ±1.5, respectively, with an SI =206. Two other compounds 4j (CC50 = 35 μM ±2 and EC50 = 24 μM ±7.0) and 4k (CC50= 55 μM ±2 and EC50 = 24 μM ±5.1) presented similar inhibitory profile and selectivity indexes of 1.4 and 2.9, respectively. The results of the time-of-addition studies revealed expressive reduction of virus production (≥80%) in different stages of virus replication cycle except for compound 4h that slightly inhibited virus yield in the first 2 h post infection, but it showed expressive virus inhibition after this time. Conclusions: All three compounds slightly interact with the virus on the virucidal assay and they are not able to block virus attachment and penetration. Antiviral effect of oxoquinoline 4h was more prominent than acyclovir which leads us to suggest compound 4h as a promising molecule for further anti-BoHV-5 drug design.

Green efficient synthesis method of quinolone compound

-

Paragraph 0017; 0018, (2019/05/08)

The invention discloses a green efficient synthesis method of a quinolone compound. The method is as follows: Step 1, a dicarbonyl compound, triethyl orthoformate and an aniline compound react in theabsence of a solvent and a catalyst to obtain an enamine ester intermediate; and Step 2, the enamine ester intermediate is subjected to an intramolecular cyclization reaction under the action of a cyclization reagent diphenyl ether to obtain a quinolone parent ring compound. The purity of the product reaches up to 98.8%. the synthesis method of the invention has the following main beneficial effects: 1, the reaction in the Step 1 is efficient, and no catalyst or solvent is used so as to avoid generation of the three wastes and the yield is high; 2, the process in the step 2 is green, the cyclization reagent can be recycled and reused; and 3, the process is simple, the steps 1 and 2 can be carried out in the same reactor, and the quinolone compound is obtained after reaction and filtration.

Synthesis and photodynamic effects of new porphyrin/4-oxoquinoline derivatives in the inactivation of S. aureus

Sagrillo, Fernanda Savacini,Dias, Cristina,Gomes, Ana T.P.C.,Faustino, Maria A.F.,Almeida, Adelaide,Gon?alves De Souza, Alan,Costa, Amanda Rodrigues Pinto,Boechat, Fernanda Da Costa Santos,Bastos Vieira De Souza, Maria Cecília,Neves, Maria G.P.M.S.,Cavaleiro, José A.S.

, p. 1910 - 1922 (2019/08/20)

New porphyrin/4-oxoquinoline conjugates were synthesized from the Heck coupling reaction of a β-brominated porphyrin with 1-allyl-4-oxoquinoline derivatives, followed by demetallation and deprotection affording the promising photosensitizers 9a-e. Singlet oxygen studies have demonstrated that all the porphyrin/4-oxoquinoline conjugates 9a-e were capable of producing cytotoxic species and found to be excellent photosensitizing agents in the inactivation of S. aureus by the antimicrobial photodynamic therapy (aPDT) protocol.

Synthesis, in vitro cytotoxicity and trypanocidal evaluation of novel 1,3,6-substituted non-fluoroquinolones

Beteck, Richard M.,Isaacs, Michelle,Hoppe, Heinrich C.,Khanye, Setshaba D.

, p. 188 - 195 (2019/01/04)

Sleeping sickness (trypanosomiasis) is a neglected tropical disease that affects mostly the poorest communities in sub-Saharan Africa. Toxic side effects associated with the use of current anti-trypanosomal drugs, which in some cases kill faster than the

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 79607-22-0