Welcome to LookChem.com Sign In|Join Free

CAS

  • or

83204-68-6

Post Buying Request

83204-68-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • High Quality 99% 83204-68-6 4,9-Dibromoisochromeno[6,5,4-def]isochroMene-1,3,6,8-tetraone Manufacturer

    Cas No: 83204-68-6

  • USD $ 0.1-0.1 / Gram

  • 1 Gram

  • 100 Metric Ton/Year

  • Xi'an Xszo Chem Co., Ltd.
  • Contact Supplier

83204-68-6 Usage

General Description

4,9-Dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone is a chemical compound with the molecular formula C14H4Br2O4. It is a member of the class of compounds known as isochromeno[6,5,4-def]isochromenes, which are polycyclic aromatic compounds. This particular compound is notable for its four bromine atoms, which make it highly reactive and potentially useful for a range of chemical reactions and applications. It is also a potent electrophile due to the presence of the four electron-withdrawing carbonyl groups, making it a valuable reagent in organic synthesis. Its unique structure and reactivity make it of interest to researchers in the fields of organic chemistry and chemical synthesis.

Check Digit Verification of cas no

The CAS Registry Mumber 83204-68-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,3,2,0 and 4 respectively; the second part has 2 digits, 6 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 83204-68:
(7*8)+(6*3)+(5*2)+(4*0)+(3*4)+(2*6)+(1*8)=116
116 % 10 = 6
So 83204-68-6 is a valid CAS Registry Number.

83204-68-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (D4339)  2,6-Dibromonaphthalene-1,4,5,8-tetracarboxylic Dianhydride  >98.0%(HPLC)(T)

  • 83204-68-6

  • 1g

  • 1,450.00CNY

  • Detail
  • TCI America

  • (D4339)  2,6-Dibromonaphthalene-1,4,5,8-tetracarboxylic Dianhydride  >98.0%(HPLC)(T)

  • 83204-68-6

  • 5g

  • 5,500.00CNY

  • Detail

83204-68-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,6-Dibromonaphthalene-1,4,5,8-tetracarboxylic Dianhydride

1.2 Other means of identification

Product number -
Other names 4,9-Dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:83204-68-6 SDS

83204-68-6Relevant articles and documents

An effective and regioselective bromination of 1,4,5,8- naphthalenetetracarboxylic dianhydride using tribromoisocyanuric acid

Suseela,Sasikumar,Govindaraju

, p. 6314 - 6318 (2013)

A highly efficient and cost-effective reagent for the bromination of 1,4,5,8-naphthalenetetracarboxylic dianhydride under mild reaction conditions is reported. Bromination of 1,4,5,8-naphthalenetetracarboxylic dianhydride using tribromoisocyanuric acid (TBCA) in concentrated H2SO4 is very effective and regioselective. 1,4,5,8-Naphthalenetetracarboxylic dianhydride was brominated smoothly under optimized reaction conditions to give mono-, di- and tetra-brominated products in good to excellent yields using TBCA. As a proof of principle, the potential of this bromination methodology is demonstrated by converting brominated naphthalenetetracarboxylic dianhydrides into N-imide and core functionalized 1,4,5,8-napthalenetetracarboxylic diimides by treating with n-butylamine to yield corresponding mono-, di- and tetra-(n-butylamino)-naphthalene diimides in good yields in one-step reactions.

Quinoidization of π-Expanded Aromatic Diimides: Photophysics, Aromaticity, and Stability of the Novel Quinoidal Acenes

Ayitou, A. Jean-Luc,Jockusch, Steffen,Kamatham, Nareshbabu,Li, Jingbai,Rogachev, Andrey Yu.,Shokri, Siamak,Yang, Guang

, (2019)

We report the synthesis and photophysical characterization of π-expanded quinoidal triplet chromophores which exhibit attractive light-harvesting properties. The kinetic of the triplet excited state of quinoidal benzotetraphene 2 was found to be one order of magnitude higher than the lifetime of 3(1)* from the less conjugated parent chromophore 1. Furthermore, the evaluation of the optoelectronic properties indicates that π-expansion helps narrow the optoelectronic band gap, but the influence of the additional aromatic rings in the structure of 2 and 3 compromises the stability of the p-quinoidal ring. QDM 2 was isolated and fully characterized; however, it was found to rearomatize to a mixture of uncharacterized radical species.

Rod-like oligomers incorporating 2,6-dialkylamino core-substituted naphthalene diimide as acceptors for organic photovoltaic

Fernando, Roshan,Mao, Zhenghao,Sauvé, Geneviève

, p. 1683 - 1692 (2013)

Core-substituted naphthalene diimides (core-substituted NDIs) were incorporated into rod-like molecules and oligomers through reaction at the imide nitrogen positions. N,N′-Di(4-bromophenyl)-2,6-di(N-alkylamino)-1,4,5,8- naphthalenetetracarboxydiimide was synthesized in only three steps, and used as a versatile platform to prepare extended structures by reaction with thiophene substrates using Suzuki-coupling conditions. The optoelectronic properties of the new compounds were examined by UV/vis absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. The imide substituents had little effect on the optical and electrochemical properties of core-substituted NDIs in solution. A bathochromic shift of the absorption was observed upon film formation, accompanied by quenching of fluorescence. These observations are consistent with increased inter-molecular interactions between core-substituted NDI moieties in the solid state. All compounds were tested in organic solar cells by blending with poly(3-hexylthiophene), and several showed a photovoltaic effect, demonstrating their potential as electron acceptors in organic solar cell. The best solar cell was observed for core-substituted NDI with 4-(thiophen-2-yl)phenyl imide substituents (5a), showing a power conversion efficiency of 0.57% and a large open circuit voltage of 0.87 V. This approach allows new structure-property relationship studies of non-fullerene acceptors in organic solar cells, where one can vary the imide substituent to optimize photovoltaic parameters while keeping the optical and electrochemical properties constant.

Fabrication of diverse nano-architectures through the self-assembly of a naphthalene diimide derivative bearing four carbamates

Wagalgave, Sopan M.,Ducla, Duong,Bhosale, Rajesh S.,Kobaisi, Mohammad Al,Jones, Lathe A.,Bhosale, Sidhanath V.,Bhosale, Sheshanath V.

, p. 6785 - 6793 (2018)

A naphthalene diimide (NDI) derivative bearing four carbamate groups (coded as: W2) was synthesised using a multistep strategy, and utilizing solvophobic effects, the self-assembly of this molecule was studied using solvent mixtures. Self-assembly led to a variety of controllable morphologies of supramolecular structures on both the micro and nanoscale. Nanobelts, nanospheres, nano-corals, microflowers and nanograss-like morphologies were obtained in DMF, MCH, CHCl3, THF, water and MeOH solvent mixtures. UV-vis absorption, fluorescence emission spectroscopy, FT-IR and XRD gave insight into the mode of aggregation of W2 in various solvents. The polarity of the solvent mixtures used directed the self-organisation of W2 by driving the π-π stacking interaction between NDI cores, and the H-bonding between the carbamate moieties. Our studies show that the solvent polarity guides the self-assembly process during solvent evaporation leading to the formation of supramolecular nano- and microstructures under ambient conditions.

Naphthalene diimides with improved solubility for visible light photoredox catalysis

Rei?, Barbara,Wagenknecht, Hans-Achim

, p. 2043 - 2051 (2019)

Five core-substituted naphthalene diimides bearing two dialkylamino groups were synthesized as potential visible light photoredox catalysts and characterized by methods of optical spectroscopy and electrochemistry in comparison with one unsubstituted naphthalene diimide as reference. The core-substituted naphthalene diimides differ by the alkyl groups at the imide nitrogens and at the nitrogens of the two substituents at the core in order to enhance their solubility in DMF and thereby enhance their photoredox catalytic potential. The 1-ethylpropyl group as rather short and branched alkyl substituent at the imide nitrogen and the n-propyl group as short and unbranched one at the core amines yielded the best solubilities. The electron-donating diaminoalkyl substituents together with the electron-deficient aromatic core of the naphthalene diimides increase the charge-transfer character of their photoexcited states and thus shift their absorption into the visible light (500-650 nm). The excited state reduction potential was estimated to be approximately +1.0 V (vs SCE) which is sufficient to photocatalyze typical organic reactions. The photoredox catalytic activity in the visible light range was tested by the α-alkylation of 1-octanal as benchmark reaction. Irradiations were performed with LEDs in the visible light range between 520 nm and 640 nm. The irradiation by visible light together with the use of an organic dye instead of a transition metal complex as photoredox catalyst improve the sustainability and make photoredox catalysis “greener”.

Molecular Encapsulation of Naphthalene Diimide (NDI) Based π-Conjugated Polymers: A Tool for Understanding Photoluminescence

Royakkers, Jeroen,Guo, Kunping,Toolan, Daniel T. W.,Feng, Liang-Wen,Minotto, Alessandro,Congrave, Daniel G.,Danowska, Magda,Zeng, Weixuan,Bond, Andrew D.,Al-Hashimi, Mohammed,Marks, Tobin J.,Facchetti, Antonio,Cacialli, Franco,Bronstein, Hugo

supporting information, p. 25005 - 25012 (2021/10/20)

Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.

Influences of the number of 2-ethylhexylamine chain substituents on electron transport characteristics of core-substituted naphthalene diimide analogues

Birajdar, Shailesh S.,Naqvi, Samya,More, Kerba S.,Puyad, Avinash L.,Kumar, Rachana,Bhosale, Sidhanath V.,Bhosale, Sheshanath V.

supporting information, p. 1590 - 1600 (2021/02/06)

We designed and synthesized a series of naphthalenediimide (NDI) derivatives through core-substitution (coded as cNDI) with various number of 2-ethyl-hexylamine (EHA) chains at different positions. The molecular structure of cNDI derivatives such as cNDI-1EHA, cNDI-2EHA, cNDI-3EHA and cNDI-4EHA bearing one, two, three and four 2-ethyl-hexylamine chains, respectively, was confirmed by different spectroscopic techniques such as FTIR, 1H-NMR, 13C-NMR spectroscopy and mass spectrometry. Interestingly, the incorporation of different numbers of 2-ethyl-hexylamine on electron-deficient cNDI yields diverse photophysical and electrochemical properties. The change in the number of alkyl chains on the NDI core significantly influences the redox properties and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The changes in the morphology of the spin-coated films before and after annealing are reorganized differently depending on the number of 2-ethyl-hexylamine topology proved by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The electron mobility of cNDIs was examined by following the standard protocol of the space-charge limiting current (SCLC) method. The NDI derivatives bearing various number of 2-ethyl-hexylamine chains at the NDI core after thermal treatment at 170 °C exhibited very good electron mobility of the order of 10-6 to 10-4 cm2 V-1 s-1. The observed electron mobility trends depend not only on the number of 2-ethyl-hexylamine substituents but also on the changes in thin-film morphology.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 83204-68-6