867131-59-7Relevant articles and documents
INDAZOLYL-SPIRO[2.2]PENTANE-CARBONITRILE DERIVATIVES AS LRRK2 INHIBITORS, PHARMACEUTICAL COMPOSITIONS, AND USES THEREOF
-
Page/Page column 57, (2019/05/02)
The present invention is directed to substituted certain reversed indazolyl-spiro[2.2]pentane-carbonitrile derivatives of Formula (I): and pharmaceutically acceptable salts thereof, wherein R1, R2, R3, X, Y, and Z are as defined herein, which are potent inhibitors of LRRK2 kinase and may be useful in the treatment or prevention of diseases in which the LRRK2 kinase is involved, such as Parkinson's Disease and other diseases and disorders described herein. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the prevention or treatment of such diseases in which LRRK-2 kinase is involved.
Structure-based design of a novel series of potent, selective inhibitors of the class i phosphatidylinositol 3-kinases
Smith, Adrian L.,D'Angelo, Noel D.,Bo, Yunxin Y.,Booker, Shon K.,Cee, Victor J.,Herberich, Brad,Hong, Fang-Tsao,Jackson, Claire L. M.,Lanman, Brian A.,Liu, Longbin,Nishimura, Nobuko,Pettus, Liping H.,Reed, Anthony B.,Tadesse, Seifu,Tamayo, Nuria A.,Wurz, Ryan P.,Yang, Kevin,Andrews, Kristin L.,Whittington, Douglas A.,McCarter, John D.,Miguel, Tisha San,Zalameda, Leeanne,Jiang, Jian,Subramanian, Raju,Mullady, Erin L.,Caenepeel, Sean,Freeman, Daniel J.,Wang, Ling,Zhang, Nancy,Wu, Tian,Hughes, Paul E.,Norman, Mark H.
experimental part, p. 5188 - 5219 (2012/08/28)
A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.