876-03-9Relevant articles and documents
Catalytic Staudinger Reduction at Room Temperature
Lenstra, Danny C.,Wolf, Joris J.,Mecinovi?, Jasmin
, p. 6536 - 6545 (2019/05/24)
We report an efficient catalytic Staudinger reduction at room temperature that enables the preparation of a structurally diverse set of amines from azides in excellent yields. The reaction is based on the use of catalytic amounts of triphenylphosphine as a phosphine source and diphenyldisiloxane as a reducing agent. Our catalytic Staudinger reduction exhibits a high chemoselectivity, as exemplified by reduction of azides over other common functionalities, including nitriles, alkenes, alkynes, esters, and ketones.
Synthesis and evaluation of novel aromatic substrates and competitive inhibitors of GABA aminotransferase
Clift, Michael D.,Silverman, Richard B.
, p. 3122 - 3125 (2008/12/22)
The design, synthesis, and evaluation of novel γ-aminobutyric acid aminotransferase (GABA-AT) inhibitors and inactivators can lead to the discovery of new GABA-related therapeutics. To this end, a series of aromatic amino acid compounds was synthesized to aid in the design of new inhibitors and inactivators of GABA-AT. All compounds were tested as competitive inhibitors of GABA-AT. The amino acids with benzylic amines were also tested as substrates for GABA-AT. It was found that these compounds were all poor competitive inhibitors of GABA-AT, but some were substrates of the enzyme, suggesting their utility as scaffolds for potential GABA-AT mechanism-based inactivators. Computer modeling was used to rationalize the substrate activity of the various compounds.
AMIDINOPHENYLPYRUVIC ACID DERIVATIVES
-
, (2008/06/13)
An amidinophenylpyruvic acid derivative of the following formula, analogs thereof and pharmaceutically acceptable salts thereof have an excellent antagonistic effect against activated blood coagulation factor VII.