88958-15-0Relevant articles and documents
Novel N-benzylpiperidine derivatives of 5-arylisoxazole-3-carboxamides as anti-Alzheimer's agents
Saeedi, Mina,Felegari, Peyman,Iraji, Aida,Hariri, Roshanak,Rastegari, Arezoo,Mirfazli, S. Sara,Edraki, Najmeh,Firuzi, Omidreza,Mahdavi, Mohammad,Akbarzadeh, Tahmineh
, (2020/11/30)
The complex pathophysiology of Alzheimer's disease (AD) has prompted researchers to develop multitarget-directed molecules to find an effective therapy against the disease. In this context, a novel series of N-(1-benzylpiperidin-4-yl)-5-arylisoxazole-3-ca
Design and synthesis of novel 5-arylisoxazole-1,3,4-thiadiazole hybrids as α-glucosidase inhibitors
Akbarzadeh, Tahmineh,Eslami, Azadeh,Faramarzi, Mohammad Ali,Mahdavi, Mohammad,Mirfazli, Seyedeh Sara,Saeedi, Mina,Zardkanlou, Mahsa
, p. 436 - 444 (2021/10/04)
Background: α-Glucosidase inhibitors have occupied a significant position in the treatment of type 2 diabetes. In this respect, the development of novel and efficient non-sugar-based inhibitors is in high demand. Objective: Design and synthesis of new 5-arylisoxazole-1,3,4-thiadiazole hybrids possessing α-glucosidase inhibitory activity were developed. Methods: Different derivatives were synthesized by the reaction of various 5-arylisoxazole-3-carboxylic acids and ethyl 2-((5-amino-1,3,4-thiadiazol-2-yl)thio)acetate. Finally, they were evalu-ated for their α-glucosidase inhibitory activity. Results: It was found that ethyl 2-((5-(5-(2-chlorophenyl)isoxazole-3-carboxamido)-1,3,4-thiadiazol-2-yl)thio)acetate (5j) was the most potent compound (IC50 = 180.1 μM) compared with acarbose as the reference drug (IC50 = 750.0 μM). Also, the kinetic study of 5j revealed a competitive inhibition and docking study results indicated desired interactions of that compound with amino acid residues located close to the active site of α-glucosidase. Conclusion: Good α-glucosidase inhibitory activity obtained by the title compounds introduced them as an efficient scaffold, which merits to be considered in anti-diabetic drug discovery developments.
Mechanochemistry Enabled Construction of Isoxazole Skeleton via CuO Nanoparticles Catalyzed Intermolecular Dehydrohalogenative Annulation
Vadivelu, Murugan,Sampath, Sugirdha,Muthu, Kesavan,Karthikeyan, Kesavan,Praveen, Chandrasekar
, p. 4941 - 4952 (2021/09/09)
A dehydrohalogenative approach for isoxazole annulation by partnering β-vinyl halides and α-nitrocarbonyls under mechanochemical setting was accomplished. This chemistry is operative under the cooperative catalysis of cupric oxide nanoparticles (50 nm) a
Synthesis of isoxazoles via cyclization of β-fluoro enones with sodium azide
Li, Liangkui,Huang, Shiqing,Mao, Kuantao,Lv, Leiyang,Li, Zhiping
supporting information, (2021/04/22)
A practical method for the synthesis of 3,5-disubstituted isoxazoles via cyclization of β-fluoro enones with sodium azide was disclosed. Density functional theory (DFT) calculation indicated that both (1) the azirine formation followed by intramolecular rearrangement and (2) direct enolate O-attack via 5-exo-trig cyclization of vinyl azide were possible for the isoxazole formation.
Design and Synthesis of Novel Arylisoxazole-Chromenone Carboxamides: Investigation of Biological Activities Associated with Alzheimer's Disease
Akbarzadeh, Tahmineh,Edraki, Najmeh,Firuzi, Omidreza,Hariri, Roshanak,Mahdavi, Mohammad,Mirfazli, Seyedeh Sara,Rastegari, Arezoo,Saeedi, Mina
, (2020/04/29)
A novel series of hybrid arylisoxazole-chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase (ChE) inhibitory activity based on the modified Ellman's method. Among synthesized compounds, 5-(3-nitrophenyl)-N-{4-[(2-oxo-
Oxidize Amines to Nitrile Oxides: One Type of Amine Oxidation and Its Application to Directly Construct Isoxazoles and Isoxazolines
Zhang, Xiao-Wei,He, Xiao-Lin,Yan, Nan,Zheng, Hong-Xing,Hu, Xiang-Guo
, p. 15726 - 15735 (2020/11/30)
A facile oxidative heterocyclization of commercially available amines and tert-butyl nitrite with alkynes or alkenes leading to isoxazoles or isoxazolines is described. The unprecedented strategy of the oxidation of an amine directly to a nitrile oxide was used in this cyclization process. This reaction is highly efficient, regiospecific, operationally simple, mild, and tolerant of a variety of functional groups. Control experiments support a nitrile oxide intermediate mechanism for this novel class of oxidative cyclization reactions. Moreover, synthetic applications toward bioactive molecular skeletons and the late-stage modification of drugs were realized.
Design and Synthesis of Selective Acetylcholinesterase Inhibitors: Arylisoxazole-Phenylpiperazine Derivatives
Saeedi, Mina,Mohtadi-Haghighi, Dorrin,Mirfazli, Seyedeh Sara,Mahdavi, Mohammad,Hariri, Roshanak,Lotfian, Hania,Edraki, Najmeh,Iraji, Aida,Firuzi, Omidreza,Akbarzadeh, Tahmineh
, (2019/02/09)
In this work, a novel series of arylisoxazole-phenylpiperazines were designed, synthesized, and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our results revealed that [5-(2-chlorophenyl)-1,2-oxazol-3-yl](4-phenylpiperazin
Design, synthesis and structure-based optimization of novel isoxazole-containing benzamide derivatives as FtsZ modulators
Bi, Fangchao,Song, Di,Zhang, Nan,Liu, Zhiyang,Gu, Xinjie,Hu, Chaoyu,Cai, Xiaokang,Venter, Henrietta,Ma, Shutao
, p. 90 - 103 (2018/10/04)
Antibiotic resistance among clinically significant bacterial pathogens is becoming a prevalent threat to public health, and new antibacterial agents with novel mechanisms of action hence are in an urgent need. Utilizing computational docking method and structure-based optimization strategy, we rationally designed and synthesized two series of isoxazol-3-yl- and isoxazol-5-yl-containing benzamide derivatives that targeted the bacterial cell division protein FtsZ. Evaluation of their activity against a panel of Gram-positive and -negative pathogens revealed that compounds B14 and B16 that possessed the isoxazol-5-yl group showed strong antibacterial activity against various testing strains, including methicillin-resistant Staphylococcus aureus and penicillin-resistant S. aureus. Further molecular biological studies and docking analyses proved that the compound functioned as an effective inhibitor to alter the dynamics of FtsZ self-polymerization via a stimulatory mechanism, which finally terminated the cell division and caused cell death. Taken together, these results could suggest a promising chemotype for development of new FtsZ-targeting bactericidal agent.
Synthesis and cellular bioactivities of novel isoxazole derivatives incorporating an arylpiperazine moiety as anticancer agents
?al??kan, Burcu,?bi?, Kübra,Banoglu, Erden,Sinoplu, Esra,Akhan Güzelcan, Ece,?etin Atalay, Rengül
, p. 1352 - 1361 (2018/11/21)
In our endeavour towards the development of effective anticancer therapeutics, a novel series of isoxazole-piperazine hybrids were synthesized and evaluated for their cytotoxic activities against human liver (Huh7 and Mahlavu) and breast (MCF-7) cancer ce
1,2,3-Triazole-isoxazole based acetylcholinesterase inhibitors: Synthesis, biological evaluation and docking study
Najafi, Zahra,Mahdavi, Mohammad,Saeedi, Mina,Sabourian, Reyhaneh,Khanavi, Mahnaz,Safavi, Maliheh,Tehrani, Maliheh Barazandeh,Shafiee, Abbas,Foroumadi, Alireza,Akbarzadeh, Tahmineh
, p. 58 - 65 (2017/05/08)
In this work, a series of derivatives containing 1,2,3-triazole and isoxazole were synthesized. All of them were evaluated as novel dual AChE inhibitors. Most of synthesized compounds showed moderate to good inhibitory potency toward AChE. Among them, N-(