Welcome to LookChem.com Sign In|Join Free

CAS

  • or

99848-91-6

Post Buying Request

99848-91-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

99848-91-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 99848-91-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,9,8,4 and 8 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 99848-91:
(7*9)+(6*9)+(5*8)+(4*4)+(3*8)+(2*9)+(1*1)=216
216 % 10 = 6
So 99848-91-6 is a valid CAS Registry Number.

99848-91-6Upstream product

99848-91-6Relevant articles and documents

Photoinduced rearrangement of aromatic N-chloroamides to chloroaromatic amides in the solid state: Inverted Πn-ΣN occupational stability of amidyl radicals

Naumov, Pan?e,Topcu, Yildiray,Eckert-Maksi?, Mirjana,Glasovac, Zoran,Pavo?evi?, Fabijan,Kochunnoonny, Manoj,Hara, Hideyuki

, p. 7834 - 7848 (2011)

We report a solid-state photochemical rearrangement reaction by which aromatic N-chloroamides exposed to UV light or sunlight are rapidly and efficiently converted to chloroaromatic amides. The course, the intermediate (nascent chlorine vs dichlorine) and the outcome of the reaction depend on the excitation (exposure time, wavelength, and intensity) and on inherent structural factors (the directing role of the substituents and, as demonstrated by the different reactivity of two polymorphs of N-chlorobenzanilide, the supramolecular structure). The photolysis of the chloroamides provides facile photochemical access to arylamidyl radicals as intermediates, which in the absence of strong hydrogen bond donors are stabilized in the reactant crystals by C-H/N-Cl?π interactions, thus, providing insight into their structure and chemistry. Thorough theoretical modeling of the factors determinant to the stability and the nature of the spin-hosting orbital evidenced that although the trans-Π|| state (Np spin) of the amidyls is normally preferred over the trans-Σ⊥ configuration (Nsp2 spin), stabilization by aromatic conjugation, steric and geometry factors, as well as by electronic effects from the substituents can decrease the Π-Σ gap in these intermediates significantly, resulting in similar and, in the case of the orthogonal amide-phenyl disposition, even reversed population of the unpaired electron in the two orbitals. Quantitative correlation established that the inverted occupational spin stability and the ΠN-ΣN crossover are collectively facilitated by the conformation, valence angle, and disposition of the amide group relative to the aromatic system. The stabilization and detection of a trans-Σ⊥ radical was experimentally accomplished by steric locking of the orthogonal trans-amide conformation with double ortho-tert-butyl substitution at the phenyl ring. The effects of the single para-phenyl substituents on the relative occupational stability of the arylamidyl radical states point out to non-Hammett behavior. By including cumulative electronic effects from multiple substitutions, four distinct families of the aromatic amidyl radicals were identified. The Π∥ state is the most stable structure of the N-phenylacetamidyl radical and of most of the substituted arylamidyls, although the Σ⊥ and Π⊥ states can also be stabilized by introducing tert-butyl and nitro groups, respectively.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 99848-91-6