1314138-13-0Relevant articles and documents
Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies
Barlaam, Bernard,Casella, Robert,Cidado, Justin,Cook, Calum,De Savi, Chris,Dishington, Allan,Donald, Craig S.,Drew, Lisa,Ferguson, Andrew D.,Ferguson, Douglas,Glossop, Steve,Grebe, Tyler,Gu, Chungang,Hande, Sudhir,Hawkins, Janet,Hird, Alexander W.,Holmes, Jane,Horstick, James,Jiang, Yun,Lamb, Michelle L.,McGuire, Thomas M.,Moore, Jane E.,O'Connell, Nichole,Pike, Andy,Pike, Kurt G.,Proia, Theresa,Roberts, Bryan,San Martin, Maryann,Sarkar, Ujjal,Shao, Wenlin,Stead, Darren,Sumner, Neil,Thakur, Kumar,Vasbinder, Melissa M.,Varnes, Jeffrey G.,Wang, Jianyan,Wang, Lei,Wu, Dedong,Wu, Liangwei,Yang, Bin,Yao, Tieguang
, p. 15564 - 15590 (2021/01/09)
A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after intravenous administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated effective dose. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematological cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematological tumors. Compound 24 is currently in clinical trials for the treatment of hematological malignancies.
Chemical Compounds
-
, (2017/01/19)
Provided are a series of novel pyridine or pyrimidine derivatives which inhibit CDK9 and may be useful for the treatment of hyperproliferative diseases. In particular the compounds are of use in the treatment of proliferative disease such as cancer including hematological malignancies such as acute myeloid leukemia, multiple myeloma, chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt's lymphoma, follicular lymphoma and solid tumors such as breast cancer, lung cancer, neuroblastoma and colon cancer.
ARYLOXYMETHYL CYCLOPROPANE DERIVATIVES AS PDE10 INHIBITORS
-
Paragraph 0148, (2016/10/31)
The present invention is directed to aryloxymethyl cyclopropane derivatives which are useful as therapeutic agents for the treatment of central nervous system disorders associated with phosphodiesterase 10 (PDE10). The present invention also relates to the use of such compounds for treating neurological and psychiatric disorders, such as schizophrenia, psychosis or Huntington's disease, and those associated with striatal hypofunction or basal ganglia dysfunction.
PYRAZOLYL DERIVATIVES AS SYK INHIBITORS
-
Page/Page column 135-136, (2014/01/09)
The present invention provides novel pyrazole derivatives of formula I which are potent inhibitors of spleen tyrosine kinase, and are useful in the treatment and prevention of diseases mediated by said enzyme, such as asthma, COPD, rheumatoid arthritis, and cancer.
2-PYRIDYL CARBOXAMIDE-CONTAINING SPLEEN TYROSINE KINASE (SYK) INHIBITORS
-
Paragraph 00250, (2013/04/24)
The invention provides certain 2-pyridyl carboxamide-containing compounds of the Formula (I) or pharmaceutically acceptable salts thereof, wherein A and B are as defined herein. The invention also provides pharmaceutical compositions comprising such compounds, and methods of using the compounds for treating diseases or conditions mediated by Spleen Tyrosine Kinase (Syk) kinase.