2757082-99-6Relevant articles and documents
Chiral Alkyl Amine Synthesis via Catalytic Enantioselective Hydroalkylation of Enecarbamates
Qian, Deyun,Bera, Srikrishna,Hu, Xile
supporting information, p. 1959 - 1967 (2021/02/06)
Chiral alkyl amines are omnipresent as bioactive molecules and synthetic intermediates. The catalytic and enantioselective synthesis of alkyl amines from readily accessible precursors is challenging. Here we develop a nickel-catalyzed hydroalkylation method to assemble a wide range of chiral alkyl amines from enecarbamates (N-Cbz-protected enamines) and alkyl halides with high regio- and enantioselectivity. The method works for both nonactivated and activated alkyl halides and is able to produce enantiomerically enriched amines with two minimally differentiated α-alkyl substituents. The mild conditions lead to high functional group tolerance, which is demonstrated in the postproduct functionalization of many natural products and drug molecules, as well as the synthesis of chiral building blocks and key intermediates to bioactive compounds.
Enantioselective Ni-Catalyzed Electrochemical Synthesis of Biaryl Atropisomers
Chen, Song,Chen, Yue-Gang,Gao, Pei-Sen,Liu, Dong,Ma, Hong-Xing,Mei, Tian-Sheng,Qiu, Hui,Shuai, Bin,Wang, Yun-Zhao
supporting information, p. 9872 - 9878 (2020/06/27)
A scalable enantioselective nickel-catalyzed electrochemical reductive homocoupling of aryl bromides has been developed, affording enantioenriched axially chiral biaryls in good yield under mild conditions using electricity as a reductant in an undivided cell. Common metal reductants such as Mn or Zn powder resulted in significantly lower yields in the absence of electric current under otherwise identical conditions, underscoring the enhanced reactivity provided by the combination of transition metal catalysis and electrochemistry.
Ligand-Controlled Regiodivergent Hydroalkylation of Pyrrolines
Qian, Deyun,Hu, Xile
supporting information, p. 18519 - 18523 (2019/11/22)
Nickel hydride (NiH) catalyzed hydrocarbonation has emerged as an efficient approach to construct new C?C bonds containing at least one C(sp3) center. However, the regioselectivity of this reaction is by far dictated by substrates. Described here is a strategy to achieve two different regioselectivites of hydroalkylation of the same substrates by using ligand control. This strategy enables the first regiodivergent hydroalkylation of 3-pyrrolines, yielding both 2- and 3-alkylated pyrrolidines, valuable synthetic intermediates and common motifs in many bioactive molecules. This method demonstrates broad scope and high functional-group tolerance, and can be applied in late-stage functionalizations.