Welcome to LookChem.com Sign In|Join Free

CAS

  • or

128958-65-6

Post Buying Request

128958-65-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

128958-65-6 Usage

General Description

4-BENZYLOXYBENZHYDRAZIDE is a chemical compound that is used in the pharmaceutical industry. It has been studied for its potential use in drug development, particularly in the field of cancer research. The compound is known to have strong antioxidant and anti-inflammatory properties, making it a potential candidate for the treatment of diseases such as cancer and arthritis. Additionally, 4-BENZYLOXYBENZHYDRAZIDE has been found to exhibit antibacterial and antifungal activities, further demonstrating its potential in the development of new medical treatments. Overall, this chemical compound shows promise for a variety of therapeutic applications and continues to be the subject of ongoing research.

Check Digit Verification of cas no

The CAS Registry Mumber 128958-65-6 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,8,9,5 and 8 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 128958-65:
(8*1)+(7*2)+(6*8)+(5*9)+(4*5)+(3*8)+(2*6)+(1*5)=176
176 % 10 = 6
So 128958-65-6 is a valid CAS Registry Number.
InChI:InChI=1/C14H14N2O2/c15-16-14(17)12-6-8-13(9-7-12)18-10-11-4-2-1-3-5-11/h1-9H,10,15H2,(H,16,17)

128958-65-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-(Benzyloxy)benzohydrazide

1.2 Other means of identification

Product number -
Other names 4-BENZYLOXYBENZHYDRAZIDE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:128958-65-6 SDS

128958-65-6Relevant articles and documents

Ultrasound assisted synthesis of 4-(Benzyloxy)-N-(3-chloro-2-(substitutedphenyl)-4-oxoazetidin-1-yl) benzamide as challenging anti-tubercular scaffold

Nimbalkar, Urja D.,Seijas, Julio A.,Borkute, Rachna,Damale, Manoj G.,Sangshetti, Jaiprakash N.,Sarkar, Dhiman,Nikalje, Anna Pratima G.

, (2018)

A series of ten novel derivatives of 4-(benzyloxy)-N-(3-chloro-2-(substituted phenyl)-4-oxoazetidin-1-yl) benzamide 6a–j were synthesized in good yield from the key compound 4-(benzyloxy)-N’-(substituted benzylidene) benzo hydrazide, called Schiff’s bases 5a–j, by Staudinger reaction ([2 + 2] ketene-imine cycloaddition reaction) with chloro acetyl chloride in the presence of catalyst tri ethylamine and solvent dimethyl formamide (DMF), by using ultra-sonication as one of the green chemistry tools. All the synthesised compounds were evaluated for in vitro anti-tubercular activity against Mycobacterium tuberculosis (MTB) and most of them showed promising activity with an IC50 value of less than 1 μg/mL. To establish the safety, all the synthesized compounds were further tested for cytotoxicity against the human cancer cell line HeLa and all 6a–j compounds were found to be non-cytotoxic in nature. The molecular docking study was carried out with essential enzyme InhA (FabI/ENR) of Mycobacterium responsible for cell wall synthesis which suggests that 6a and 6e are the most active derivatives of the series. The theoretical evaluation of cell permeability based on Lipinski’s rule of five has helped to rationalize the biological results and hence the synthesized azetidinone derivatives 6a–j were also analyzed for physicochemical evaluation that is, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and the results showed that all the derivatives could comply with essential features required for a potential lead in the anti-tubercular drug discovery process.

4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors

Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

, (2021/06/15)

In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.

Design of Hydrazide-Bearing HDACIs Based on Panobinostat and Their p53 and FLT3-ITD Dependency in Antileukemia Activity

Li, Xiaoyang,Jiang, Yuqi,Peterson, Yuri K.,Xu, Tongqiang,Himes, Richard A.,Luo, Xin,Yin, Guilin,Inks, Elizabeth S.,Dolloff, Nathan,Halene, Stephanie,Chan, Sherine S. L.,Chou, C. James

, p. 5501 - 5525 (2020/06/10)

Here, we present a new series of hydrazide-bearing class I selective HDAC inhibitors designed based on panobinostat. The cap, linker, and zinc-binding group were derivatized to improve HDAC affinity and antileukemia efficacy. Lead inhibitor 13a shows picomolar or low nanomolar IC50 values against HDAC1 and HDAC3 and exhibits differential toxicity profiles toward multiple cancer cells with different FLT3 and p53 statuses. 13a indirectly inhibits the FLT3 signaling pathway and down-regulates master antiapoptotic proteins, resulting in the activation of pro-caspase3 in wt-p53 FLT3-ITD MV4-11 cells. While in the wt-FLT3 and p53-null cells, 13a is incapable of causing apoptosis at a therapeutic concentration. The MDM2 antagonist and the proteasome inhibitor promote 13a-triggered apoptosis by preventing p53 degradation. Furthermore, we demonstrate that apoptosis rather than autophagy is the key contributing factor for 13a-triggered cell death. When compared to panobinostat, 13a is not mutagenic and displays superior in vivo bioavailability and a higher AUC0-inf value.

Photoconductive bent-core liquid crystalline radicals with a paramagnetic polar switchable phase

Shivakumar, Kilingaru I.,Pociecha, Damian,Szczytko, Jacek,Kapu?ciński, Szymon,Monobe, Hirosato,Kaszyński, Piotr

, p. 1083 - 1088 (2020/02/05)

A series of self-organizing bent-core derivatives 1[12,n], containing a highly π-delocalized stable radical as the central angular structural element, is described. The planarity of the open-shell core permits efficient π-π stacking, which results in the formation of B2 and soft crystalline phases above 100 °C. Optical, XRD and dielectric analyses of 1[12,12] indicate that the ground state of the observed B2 phase is polar antiferroelectric of type SmCAPA exhibiting tristable electro-optical switching. SQUID and EPR measurements revealed strong antiferromagnetic spin-spin exchange interactions below the isotropic phase, which have been estimated at θ = -46 cm-1 with the Curie-Weiss law. Transient photoconductivity was observed in the B2 phase with a hole carrier mobility μh of 1.4 × 10-4 cm2 V-1 s-1

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 128958-65-6