Welcome to LookChem.com Sign In|Join Free

CAS

  • or

599-75-7

Post Buying Request

599-75-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

599-75-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 599-75-7 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,9 and 9 respectively; the second part has 2 digits, 7 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 599-75:
(5*5)+(4*9)+(3*9)+(2*7)+(1*5)=107
107 % 10 = 7
So 599-75-7 is a valid CAS Registry Number.

599-75-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (2-methylphenyl) 4-methylbenzenesulfonate

1.2 Other means of identification

Product number -
Other names o-tolyl 4-methylbenzenesulfonate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:599-75-7 SDS

599-75-7Relevant articles and documents

Small Phosphine Ligands Enable Selective Oxidative Addition of Ar-O over Ar-Cl Bonds at Nickel(0)

Entz, Emily D.,Hooker, Leidy V.,Neufeldt, Sharon R.,Russell, John E. A.

supporting information, p. 15454 - 15463 (2020/10/18)

Current methods for Suzuki-Miyaura couplings of nontriflate phenol derivatives are limited by their intolerance of halides including aryl chlorides. This is because Ni(0) and Pd(0) often undergo oxidative addition of organohalides at a similar or faster rate than most Ar-O bonds. DFT and stoichiometric oxidative addition studies demonstrate that small phosphines, in particular PMe3, are unique in promoting preferential reaction of Ni(0) with aryl tosylates and other C-O bonds in the presence of aryl chlorides. This selectivity was exploited in the first Ni-catalyzed C-O-selective Suzuki-Miyaura coupling of chlorinated phenol derivatives where the oxygen-containing leaving group is not a fluorinated sulfonate such as triflate. Computational studies suggest that the origin of divergent selectivity between PMe3 and other phosphines differs from prior examples of ligand-controlled chemodivergent cross-couplings. PMe3 effects selective reaction at tosylate due to both electronic and steric factors. A close interaction between nickel and a sulfonyl oxygen of tosylate during oxidative addition is critical to the observed selectivity.

Copper-Catalyzed C-S Bond Formation via the Cleavage of C-O Bonds in the Presence of S8 as the Sulfur Source

Rostami, Abed,Rostami, Amin,Ghaderi, Arash,Gholinejad, Mohammad,Gheisarzadeh, Sajedeh

, p. 5025 - 5038 (2017/10/06)

Useful and applicable methods for one-pot and odorless synthesis of unsymmetrical and symmetrical diaryl sulfides via C-O bond activation are presented. First, a new efficient procedure for the synthesis of unsymmetrical sulfides using the cross-coupling reaction of phenolic esters such as acetates, tosylates, and triflates and with arylboronic acid or triphenyltin chloride as the coupling partners is reported. Depending on the reaction, S 8 /KF or S 8 /NaO t -Bu system is found to be an effective source of sulfur in the presence of copper salts and in poly(ethylene glycol) as a green solvent. Then, the synthesis of symmetrical diaryl sulfides from phenolic compounds by using S 8 as the sulfur source and NaO t -Bu in anhydrous DMF at 120 °C under N 2 is described. By these protocols, the synthesis of a variety of unsymmetrical and symmetrical sulfides become easier than the available protocols in which thiols and aryl halides are directly used for the preparation of the sulfides.

Iodine-induced synthesis of sulfonate esters from sodium sulfinates and phenols under mild conditions

Gao, Jian,Pan, Xiaojun,Liu, Juan,Lai, Junyi,Chang, Liming,Yuan, Gaoqing

, p. 27439 - 27442 (2015/03/31)

An iodine-induced synthesis of sulfonate esters via cross-coupling reactions of sodium sulfinates with phenols is reported. This synthetic route is low-cost, facile, green and efficient, and could afford the target products with good to excellent yields u

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 599-75-7