Welcome to LookChem.com Sign In|Join Free

CAS

  • or

471-10-3

Post Buying Request

471-10-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

471-10-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 471-10-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,7 and 1 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 471-10:
(5*4)+(4*7)+(3*1)+(2*1)+(1*0)=53
53 % 10 = 3
So 471-10-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H17Cl/c1-5-10(4,11)8-6-7-9(2)3/h5,7H,1,6,8H2,2-4H3

471-10-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-chloro-3,7-dimethylocta-1,6-diene

1.2 Other means of identification

Product number -
Other names 1,6-Octadiene,3-chloro-3,7-dimethyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:471-10-3 SDS

471-10-3Relevant articles and documents

Formamide-Catalyzed Nucleophilic Substitutions: Mechanistic Insight and Rationalization of Catalytic Activity

Hilt, Gerhard,Huy, Peter H.,Kohlmeyer, Corinna,Sch?fer, André

, p. 11567 - 11577 (2020/11/17)

Herein, detailed mechanistic investigations into formamide-catalyzed nucleophilic substitution (SN) of alcohols are reported. Alkoxyiminium chlorides and hexafluorophosphates were synthesized and characterized as a key intermediate of the catalytic cycle. The determination of reaction orders and control experiments indicated that the nucleophilic attack of the formamide catalyst onto the reagent BzCl is the rate-determining step. Linear free energy relationship revealed a correlation between the quantified Lewis basicity strength of formamides by means of 11B NMR spectroscopy and their catalytic activity in SN-transformations. The observed difference in catalytic ability was attributed to the natural bond order charge, dipole moment, and Sterimol parameter B5. Importantly, this rationalization enables the prediction of the capacity of formamides to promote SN-type transformations in general.

Nucleophilic Substitutions of Alcohols in High Levels of Catalytic Efficiency

Stach, Tanja,Dr?ger, Julia,Huy, Peter H.

supporting information, p. 2980 - 2983 (2018/05/28)

A practical method for the nucleophilic substitution (SN) of alcohols furnishing alkyl chlorides, bromides, and iodides under stereochemical inversion in high catalytic efficacy is introduced. The fusion of diethylcyclopropenone as a simple Lewis base organocatalyst and benzoyl chloride as a reagent allows notable turnover numbers up to 100. Moreover, the use of plain acetyl chloride as a stoichiometric promotor in an invertive SN-type transformation is demonstrated for the first time. The operationally straightforward protocol exhibits high levels of stereoselectivity and scalability and tolerates a variety of functional groups.

Formamides as Lewis Base Catalysts in SNReactions—Efficient Transformation of Alcohols into Chlorides, Amines, and Ethers

Huy, Peter H.,Motsch, Sebastian,Kappler, Sarah M.

supporting information, p. 10145 - 10149 (2016/08/16)

A simple formamide catalyst facilitates the efficient transformation of alcohols into alkyl chlorides with benzoyl chloride as the sole reagent. These nucleophilic substitutions proceed through iminium-activated alcohols as intermediates. The novel method, which can be even performed under solvent-free conditions, is distinguished by an excellent functional group tolerance, scalability (>100 g) and waste-balance (E-factor down to 2). Chiral substrates are converted with excellent levels of stereochemical inversion (99 %→≥95 % ee). In a practical one-pot procedure, the primary formed chlorides can be further transformed into amines, azides, ethers, sulfides, and nitriles. The value of the method was demonstrated in straightforward syntheses of the drugs rac-Clopidogrel and S-Fendiline.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 471-10-3