Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4732-70-1

Post Buying Request

4732-70-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4732-70-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4732-70-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,7,3 and 2 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 4732-70:
(6*4)+(5*7)+(4*3)+(3*2)+(2*7)+(1*0)=91
91 % 10 = 1
So 4732-70-1 is a valid CAS Registry Number.
InChI:InChI=1/C10H10O5/c1-14-7-4-3-6(5-8(7)15-2)9(11)10(12)13/h3-5H,1-2H3,(H,12,13)

4732-70-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(3,4-dimethoxyphenyl)-2-oxoacetic acid

1.2 Other means of identification

Product number -
Other names 3,4-Dimethoxyphenylglyoxylsaeure

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4732-70-1 SDS

4732-70-1Relevant articles and documents

K2S2O8mediated synthesis of 5-Aryldipyrromethanes and meso-substituted A4-Tetraarylporphyrins

Laha, Joydev K.,Hunjan, Mandeep Kaur

, p. 664 - 673 (2021/06/03)

The synthesis of dipyrromethanes from pyrrole and arylglyoxylic acids in the presence of K2S2O8at 90 C is reported affording dipyrromethanes in very good yields. Unlike an excess pyrrole traditionally used in dipyrromethane synthesis, the current method uses a stoichiometric amount of pyrrole avoiding any use of Br?nsted or Lewis acid. A gram scale synthesis of 5-phenyldipyrromethane is also achieved demonstrating potential scale up of dipyrromethanes using this method feasible. Subsequently, dipyrromethanes were converted to A4tetraarylporphyrins also in the presence of K2S2O8at 90C. A direct synthesis of A4-tetraphenylporphyrin from excess pyrrole and phenylglyoxylic acid in the presence of K2S2O8 at 90C is also reported.

Minisci aroylation of N-heterocycles using choline persulfate in water under mild conditions

Hunjan, Mandeep Kaur,Laha, Joydev K.,Tinwala, Ummehani

, p. 22853 - 22859 (2021/12/24)

Metal persulfate mediated thermal oxidative organic transformations invariably require a higher temperature and frequently use an organic solvent. The objective of this work was to develop persulfate mediated oxidative transformations that can be performed nearly at room temperature using water as a solvent. This report describes modified Minisci aroylation of isoquinolines with arylglyoxylic acids using choline persulfate and its pre-composition (choline acetate and K2S2O8) in water at 40 °C. A few other nitrogen heterocycles were also utilized affording various aroylated products in good to excellent yields. Unlike metal persulfate that could produce metal salt byproducts, a key feature of the chemistry reported herein includes the use of environmentally benign choline persulfate containing biodegradable choline as a counter-cation, the Minisci reaction demonstrated at 40 °C in water as the only solvent, and unconventional activation of persulfate. This journal is

Aroylation of Electron-Rich Pyrroles under Minisci Reaction Conditions

Laha, Joydev K.,Kaur Hunjan, Mandeep,Hegde, Shalakha,Gupta, Anjali

supporting information, p. 1442 - 1447 (2020/02/22)

The development of Minisci acylation on electron-rich pyrroles under silver-free neutral conditions has been reported featuring the regioselective monoacylation of (NH)-free pyrroles. Unlike conventional Minisci conditions, the avoidance of any acid that could result in the polymerization of pyrroles was the key to success. The umpolung reactivity of the nucleophilic acyl radical, generated in situ from arylglyoxylic acid, could help explain the mechanism of product formation with electron-rich pyrroles. Alternatively, the nucleophilic substitution of the acyl radical on the electron-deficient pyrrole radical cation is proposed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4732-70-1