Welcome to LookChem.com Sign In|Join Free

CAS

  • or

56456-47-4

Post Buying Request

56456-47-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

56456-47-4 Usage

Chemical Properties

CLEAR COLORLESS LIQUID

Check Digit Verification of cas no

The CAS Registry Mumber 56456-47-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,6,4,5 and 6 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 56456-47:
(7*5)+(6*6)+(5*4)+(4*5)+(3*6)+(2*4)+(1*7)=144
144 % 10 = 4
So 56456-47-4 is a valid CAS Registry Number.
InChI:InChI=1/C7H6F2O/c8-6-2-1-5(4-10)7(9)3-6/h1-3,10H,4H2

56456-47-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A19945)  2,4-Difluorobenzyl alcohol, 98+%   

  • 56456-47-4

  • 2.5g

  • 208.0CNY

  • Detail
  • Alfa Aesar

  • (A19945)  2,4-Difluorobenzyl alcohol, 98+%   

  • 56456-47-4

  • 10g

  • 709.0CNY

  • Detail

56456-47-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,4-Difluorobenzyl Alcohol

1.2 Other means of identification

Product number -
Other names (2,4-difluorophenyl)methanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:56456-47-4 SDS

56456-47-4Relevant articles and documents

Synthesis, inhibition properties against xanthine oxidase and molecular docking studies of dimethyl N-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate and (N-benzyl-1H-1,2,3-triazole-4,5-diyl)dimethanol derivatives

Yagiz, Güler,Noma, Samir Abbas Ali,Altundas, Aliye,Al-khafaji, Khattab,Taskin-Tok, Tugba,Ates, Burhan

, (2021/01/28)

This study focused on synthesis various dimethyl N-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate and (N-benzyl-1H-1,2,3-triazole-4,5-diyl)dimethanol derivatives under the conditions of green chemistry without the use of solvent and catalysts. Their inhibition properties were also investigated on xanthine oxidase (XO) activity. All dimethanol and dicarboxylate derivatives exhibited significant inhibition activities with IC50 values ranging from 0.71 to 2.25 μM. Especially, (1-(3-bromobenzyl)-1H-1,2,3-triazole-4,5-diyl)dimethanol (5c) and dimethyl 1-(4-chlorobenzyl)-1H-1,2,3-triazole-4,5-dicarboxylate (6 g) compounds were found to be the most promising derivatives on the XO enzyme inhibition with IC50 values 0.71 and 0.73 μM, respectively. Moreover, the double docking procedure was to evaluate compound modes of inhibition and their interactions with the protein (XO) at atomic level. Surprisingly, the docking results showed a good correlation with IC50 [correlation coefficient (R2 = 0.7455)]. Also, the docking results exhibited that the 5c, 6f and 6 g have lowest docking scores ?4.790, ?4.755, and ?4.730, respectively. These data were in agreement with the IC50 values. These results give promising beginning stages to assist in the improvement of novel and powerful inhibitor against XO.

Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway

Rajan, Sujith,Puri, Surendra,Kumar, Durgesh,Babu, Madala Hari,Shankar, Kripa,Varshney, Salil,Srivastava, Ankita,Gupta, Abhishek,Reddy, M. Sridhar,Gaikwad, Anil N.

, p. 1345 - 1360 (2017/11/20)

Obesity and dyslipidemia is the two facet of metabolic syndrome, which needs further attention. Recent studies indicate triazole and indole derivatives have remarkable anti-obesity/antidyslipidemic activity. To harness the above-mentioned potential, a series of novel triazole clubbed indole derivatives were prepared using click chemistry and evaluated for anti-adipogenic activity. Based on the structure-activity relationship, essential functional groups which potentiate anti-adipogenic activity were identified. The lead compound 13m exhibited potent anti-adipogenic activity compared to its parent compounds with the IC-50 value of 1.67 μM. Further evaluation of anti-adipogenic activity was conducted in different cell lines such as C3H10T1/2 and hMSC with positive result. The anti-adipogenic effect of compound 13m was most prominent in the early phase of adipogenesis, which is driven by the G1 to S phase cell cycle arrest during mitotic clonal expansion. The mechanistic study suggests that compound 13m exhibit anti-adipogenic property by activating Wnt3a/β-catenin pathway, a known suppressor of key adipogenic genes PPARγ and C/EBPα. It is noteworthy that the compound 13m also reduced serum triglyceride, LDL and total cholesterol in Syrian Golden hamster model of dyslipidemia. The anti-adipogenic activity of compound 13m can also be correlated with decreased expression of PPARγ and increased expression of β-catenin in epididymal white adipose tissue (eWAT) in vivo. The compound 13m also increased the expression of genes involved in reverse cholesterol transport (RCT) such as PPARα and LXR1α indicating another mechanism by which compound 13m ameliorates dyslipidemia in Syrian Golden hamster model. Overall this study provides a unique perspective into the anti-adipogenic/antidyslipidemic property of triazole and indole hybrids molecules with further scope to increase the anti-adipogenic potency for therapeutic intervention of obesity and metabolic syndrome.

O-alkylhydroxylamines as rationally-designed mechanism-based inhibitors of indoleamine 2,3-dioxygenase-1

Malachowski, William P.,Winters, Maria,DuHadaway, James B.,Lewis-Ballester, Ariel,Badir, Shorouk,Wai, Jenny,Rahman, Maisha,Sheikh, Eesha,LaLonde, Judith M.,Yeh, Syun-Ru,Prendergast, George C.,Muller, Alexander J.

supporting information, p. 564 - 576 (2016/01/09)

Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression. Recently important advances have been made in understanding IDO1's catalytic mechanism. Although much remains to be discovered, there is strong evidence that the mechanism proceeds through a heme-iron bound alkylperoxy transition or intermediate state. Accordingly, we explored stable structural mimics of the alkylperoxy species and provide evidence that such structures do mimic the alkylperoxy transition or intermediate state. We discovered that O-benzylhydroxylamine, a commercially available compound, is a potent sub-micromolar inhibitor of IDO1. Structure-activity studies of over forty derivatives of O-benzylhydroxylamine led to further improvement in inhibitor potency, particularly with the addition of halogen atoms to the meta position of the aromatic ring. The most potent derivatives and the lead, O-benzylhydroxylamine, have high ligand efficiency values, which are considered an important criterion for successful drug development. Notably, two of the most potent compounds demonstrated nanomolar-level cell-based potency and limited toxicity. The combination of the simplicity of the structures of these compounds and their excellent cellular activity makes them quite attractive for biological exploration of IDO1 function and antitumor therapeutic applications.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 56456-47-4