Welcome to LookChem.com Sign In|Join Free

CAS

  • or

917-69-1

Post Buying Request

917-69-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

917-69-1 Usage

Chemical Properties

dark green, very hygroscopic powder(s) or green octahedral crystal(s); used as a catalyst for cumene hydroperoxide [KIR79] [MER06]

Uses

Catalyst for cumene hydroperoxide decomposition.

Check Digit Verification of cas no

The CAS Registry Mumber 917-69-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,1 and 7 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 917-69:
(5*9)+(4*1)+(3*7)+(2*6)+(1*9)=91
91 % 10 = 1
So 917-69-1 is a valid CAS Registry Number.
InChI:InChI=1/3C2H4O2.Co/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+2/p-3

917-69-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name cobalt(3+),triacetate

1.2 Other means of identification

Product number -
Other names Acetic acid,cobalt(3+) salt

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:917-69-1 SDS

917-69-1Relevant articles and documents

The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry

Hyun, Sung-Min,Yuan, Mingbin,Maity, Asim,Gutierrez, Osvaldo,Powers, David C.

supporting information, p. 2388 - 2404 (2019/09/12)

Selective O2 utilization remains a substantial challenge in synthetic chemistry. Biological small-molecule oxidation reactions often utilize aerobically generated high-valent catalyst intermediates to effect substrate oxidation. Available synthetic methods for aerobic oxidation catalysis are largely limited to substrate functionalization chemistry by low-valent catalyst intermediates (i.e., aerobically generated Pd(II) intermediates). Motivated by the need for new chemical platforms for aerobic oxidation catalysis, we recently developed aerobic hypervalent iodine chemistry. Here, we report that in contrast to the canonical two-electron oxidation mechanisms for the oxidation of organoiodides, the developed aerobic hypervalent iodine chemistry proceeds via a radical chain mechanism initiated by the addition of aerobically generated acetoxy radicals to aryl iodides. Despite the radical chain mechanism, aerobic hypervalent iodine chemistry displays substrate tolerance similar to that observed with traditional terminal oxidants, such as peracids. We anticipate that these insights will enable new sustainable oxidation chemistry via hypervalent iodine intermediates. O2 is routinely utilized in biological catalysis to generate high-valent catalyst intermediates that engage in substrate oxidation chemistry. Analogous synthetic chemistry via aerobically generated high-valent intermediates would enable new sustainable synthetic methods but is largely unknown because of the challenges in selective O2 utilization. We have developed aerobic hypervalent iodine chemistry as a platform for coupling O2 reduction with a diverse set of substrate functionalization mechanisms. Many of the synthetic applications of hypervalent iodine reagents rely on selective two-electron oxidation-reduction chemistry. Here, we report that one-electron oxidation reactions pathways via iodanyl radical intermediates are critical in aerobic hypervalent iodine chemistry. The new appreciation for the critical role that iodanyl radicals can play in the synthesis of hypervalent iodine compounds will provide new opportunities in sustainable oxidation catalysis. Aerobic hypervalent iodine chemistry provides a strategy for coupling the one-electron chemistry of O2 with two-electron processes typical of organic synthesis. We show that in contrast to the canonical two-electron oxidation of aryl iodides, aerobic synthesis proceeds by a radical chain process initiated by the addition of aerobically generated acetoxy radicals to aryliodides to generate iodanyl radicals. Robustness analysis reveals that the developed aerobic oxidation chemistry displays substrate tolerance similar to that observed in peracid-based methods and thus holds promise as a sustainable synthetic method.

The Kinetics of Growth of Metallo-supramolecular Polyelectrolytes in Solution

Munzert, Stefanie Martina,Stier, Simon P.,Schwarz, Guntram,Weissman, Haim,Rybtchinski, Boris,Kurth, Dirk G.

, p. 2898 - 2912 (2017/10/06)

Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2′:6′,2′′-terpyridin-4′-yl)benzene (L). Due to the high association constant, metal-ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, we present the kinetics of growth of MEPEs. The species in solutions are analyzed by light scattering, viscometry and cryogenic transmission electron microscopy (cryo-TEM). At near-stoichiometric amounts of the reactants, we obtained high molar masses, which follow the order Ni-MEPE≈Co-MEPEa reversible step-growth mechanism. The forward polymerization rate constants follow the order Co-MEPEFe-MEPENi-MEPE and the growth of MEPEs can be accelerated by adding potassium acetate.

Structural, spectral and magnetic properties of carboxylato cobalt(II) complexes with heterocyclic N-donor ligands: Reconstruction of magnetic parameters from electronic spectra

Titis,Hudak,Kozisek,Krutosikova,Moncol',Tarabova,Boca

, p. 106 - 113 (2012/07/14)

Heteroleptic cobalt(II) complexes with general formula of [Co(N-base) 2(car)2(H2O)2], have been synthesized and structurally characterized; the N-base stands for neutral N-donor ligands: iso-quinoline (iqu), [1]

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 917-69-1