10299-63-5Relevant articles and documents
Palladium-catalyzed dearomative allylation of indoles with cyclopropyl acetylenes: access to indolenine derivatives
Lu, Chuan-Jun,Chen, Yu-Ting,Wang, Hong,Li, Yu-Jin
, p. 635 - 644 (2021/02/06)
A palladium-catalyzed redox-neutral allylic alkylation of indoles with cyclopropyl acetylenes has been disclosed. Various 1,3-diene indolenine framework bearing a quaternary stereocenter at the C3 position were synthesized straightforwardly in good to excellent yields with high regio- and stereoselectivities. The reaction could be further expanded to the dearomatization of naphthols to synthesize functionalized cyclohexadienones with 1,3-diene motifs. The reaction exhibited high atom economy and good functional group tolerance.
Catalytic methylation of C-H bonds using CO2 and H2
Li, Yuehui,Yan, Tao,Junge, Kathrin,Beller, Matthias
supporting information, p. 10476 - 10480 (2016/02/18)
Formation of C-C bonds from CO2 is a much sought after reaction in organic synthesis. To date, other than C-H carboxylations using stoichiometric amounts of metals, base, or organometallic reagents, little is known about C-C bond formation. In fact, to the best of our knowledge no catalytic methylation of C-H bonds using CO2 and H2 has been reported. Described herein is the combination of CO2 and H2 for efficient methylation of carbon nucleophiles such as indoles, pyrroles, and electron-rich arenes. Comparison experiments which employ paraformaldehyde show similar reactivity for the CO2/H2 system. Capturing: Carbon dioxide in the presence of H2 is shown to be an efficient methylating reagent for carbon nucleophiles such as 2-substituted indoles, pyrroles, and electron-rich arenes. Experimental data support the formal capture of formaldehyde. acac=acetylacetonate, triphos=1,1,1-tris(diphenylphosphinomethyl)ethane.