106420-93-3Relevant articles and documents
Regioselective ortho-carboxylation of phenols catalyzed by benzoic acid decarboxylases: A biocatalytic equivalent to the Kolbe-Schmitt reaction
Wuensch, Christiane,Gross, Johannes,Steinkellner, Georg,Lyskowski, Andrzej,Gruber, Karl,Glueck, Silvia M.,Faber, Kurt
, p. 9673 - 9679 (2014/03/21)
The enzyme catalyzed carboxylation of electron-rich phenol derivatives employing recombinant benzoic acid decarboxylases at the expense of bicarbonate as CO2 source is reported. In contrast to the classic Kolbe-Schmitt reaction, the biocatalytic equivalent proceeded in a highly regioselective fashion exclusively at the ortho-position of the phenolic directing group in up to 80% conversion. Several enzymes were identified, which displayed a remarkably broad substrate scope encompassing alkyl, alkoxy, halo and amino- functionalities. Based on the crystal structure and molecular docking simulations, a mechanistic proposal for 2,6-dihydroxybenzoic acid decarboxylase is presented.
NICOTINAMIDE DERIVATIVES USEFUL AS PDE4 INHIBITORS
-
Page/Page column 58, (2010/02/10)
This invention relates to nicotinamide derivative of general formula (I), in which R1, R2 and R3 have the meanings defined herein, and to compositions containing and the uses of such derivatives as PDE4 inhibitors.
TRICYCLIC DERIVATIVES OR PHARMACEUTICALLY ACCEPTABLE SALTS THEREOF, THEIR PREPARATIONS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
-
Page 72, (2010/02/10)
The present invention relates to tricyclic derivatives or pharmaceutically acceptable salts thereof, their preparations and pharmaceutical compositions containing them. More precisely, the present invention relates to tricyclic derivatives as colchicine derivatives, pharmaceutically acceptable salts thereof, their preparations and pharmaceutical compositions containing them. Tricyclic derivatives of the present invention show very powerful cytotoxicity to cancer cell lines but were much less toxic than colchicine or taxol, confirmed through animal toxicity test. Tricyclic derivatives of the invention also decrease the volume and weight of a tumor and have a strong angiogenesis inhibiting activity in HUVEC cells. Thus, tricyclic derivatives of the present invention can effectively be used as an anticancer agent, anti-proliferation agent and an angiogenesis inhibitor.