110704-13-7Relevant articles and documents
PHENICOL ANTIBACTERIALS
-
Paragraph 0314, (2013/09/26)
The present invention provides novel phenicol derivatives, their use for the treatment of infections in mammals, pharmaceutical composition containing these novel compounds, and methods for the preparation of these compounds.
Creating an antibacterial with in vivo efficacy: Synthesis and characterization of potent inhibitors of the bacterial cell division protein FTSZ with improved pharmaceutical properties
Haydon, David J.,Bennett, James M.,Brown, David,Collins, Ian,Galbraith, Greta,Lancett, Paul,MacDonald, Rebecca,Stokes, Neil R.,Chauhan, Pramod K.,Sutariya, Jignesh K.,Nayal, Narendra,Srivastava, Anil,Beanland, Joy,Hall, Robin,Henstock, Vincent,Noula, Caterina,Rockley, Chris,Czaplewski, Lloyd
supporting information; experimental part, p. 3927 - 3936 (2010/09/04)
3-Methoxybenzamide (1) is a weak inhibitor of the essential bacterial cell division protein FtsZ. Alkyl derivatives of 1 are potent antistaphylococcal compounds with suboptimal drug-like properties. Exploration of the structure-activity relationships of analogues of these inhibitors led to the identification of potent antistaphylococcal compounds with improved pharmaceutical properties.
ANTIBACTERIAL AGENTS
-
Page/Page column 96-97, (2010/11/28)
Compounds of formula (I) have antibacterial activity wherein R represents hydrogen or 1, 2 or 3 optional substituents; W is =C(R1)- or =N-; R1 is hydrogen or an optional substituent and R2 is hydrogen, methyl, or fluorine; or R1 and R2 taken together are -CH2-, -CH2CH2-, -O-, or, in either orientation, -O- CH2- Or -OCH2CH2-; R3 is a radical of formula -(Alk1)m-(Z)p-(Alk2)n-Q wherein m, p and n are independently 0 or 1, provided that at least one of m, p and n is 1, Z is -O-, -S-, -S(O)-, -S(O2)-, -NH-, -N(CH3)-, -N(CH2CH3)-, -C(=O)-, -O-(C=O)-, -C(=O)-O-, or an optionally substituted divalent monocyclic carbocyclic or heterocyclic radical having 3 to 6 ring atoms; or an optionally substituted divalent bicyclic heterocyclic radical having 5 to 10 ring atoms; Alk1 and Alk2 are optionally substituted C1C6 alkylene, C2-C6 alkenylene, or C2-C6 alkynylene radicals, which may optionally terminate with or be interrupted by -O-, -S-, -S(O)-, -S(O2)-, -NH-, -N(CH3)-, or -N(CH2CH3)-; and Q is hydrogen, halogen, nitrile, or hydroxyl or an optionally substituted monocyclic carbocyclic or heterocyclic radical having 3 to 6 ring atoms; or an optionally substituted bicyclic heterocyclic radical having 5 to 10 ring atoms.
Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1- phthalazineacetic acid (zopolrestat) and congeners
Mylari,Larson,Beyer,Zembrowski,Aldinger,Dee,Siegel,Singleton
, p. 108 - 122 (2007/10/02)
A new working hypothesis that there is a hitherto unrecognized binding site on the aldose reductase (AR) enzyme with strong affinity for benzothiazoles was pursued for the design of novel, potent aldose reductase inhibitors (ARIs). The first application of this hypothesis led to a novel series of 3,4-dihydro-4-oxo-3-(benzothiazolylmethyl)-1-phthalazineacetic acids. The parent of this series (207) was a potent inhibitor of AR from human placenta (IC50 = 1.9 x 10-8 M) and was orally active in preventing sorbitol accumulation in rat sciatic nerve, in an acute test of diabetic complications (ED50 = 18.5 mg/kg). Optimization of this lead through medicinal chemical rationale, including analogy from other drug series, led to more potent congeners of 207 and culminated in the design of 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1- phthalazineacetic acid (216, CP-73,850, zopolrestat). Zopolrestat was found to be more potent than 207, both in vitro and in vivo. Its IC50 against AR and ED50 in the acute test were 3.1 x 10-9 M and 3.6 mg/kg, respectively. Its ED50s in reversing already elevated sorbitol accumulation in rat sciatic nerve, retina, and lens in a chronic test were 1.9, 17.6, and 18.4 mg/kg, respectively. It was well absorbed in diabetic patients, resulting in high blood level, showed a highly favorable plasma half-life (27.5 h), and is undergoing further clinical evaluation. An assortment of synthetic methods used for the construction of benzothiazoles, including an efficient synthesis of zopolrestat, is described. Structure-activity relationships in the new series are discussed.
HETEROCYCLIC OXOPHTHALAZINYL ACETIC ACIDS
-
, (2008/06/13)
A heterocyclic oxophthalazinyl acetic acid having aldose reductast inhibitory activity of the formula, wherein X is oxygen or sulfur; Z is a covalent bond, O, S, NH or CH2 or CHR5Z is vinyl; R1 is hydroxy, or a prodrug group; R2 is a heterocyclic group, R3 and R4 are hydrogen or the same or a different substituent, and R5 is hydrogen, methyl or trifluoromethyl. The pharmaceutically acceptable acid addition salts of the above compounds wherein R1 is di(C1-C4)alkylamino or (C1-C4)alkoxy substituted by N-morpholino or di(Cl-C4)alkylamino and the pharmaceutically active base addition salts of the above compounds wherein R1 is hydroxy are also aldose reductase inhibitors