121-21-1Relevant articles and documents
Requirement of catalytic-triad and related amino acids for the acyltransferase activity of Tanacetum Cinerariifolium gdsl lipase/esterase tcglip for ester-bond formation in pyrethrin biosynthesis
Kikuta, Yukio,Yamada, Gen,Mitsumori, Tomonori,Takeuchi, Takayuki,Nakayama, Koji,Katsuda, Yoshio,Hatanaka, Akikazu,Matsuda, Kazuhiko
, p. 1822 - 1825 (2013)
We have recently discovered that a GDSL lipase/ esterase (TcGLIP) in Tanacetum cinerariifolium catalyzed acyltransferase activity to form an ester bond in the natural insecticide, pyrethrin. TcGLIP contained Ser40 in Block I, Gly64 in Block II, Asn168 in Block III and Asp318 and His321 in Block V, suggesting underlying hydrolase activity, although little is known about their role in acyltransferase activity. We expressed TcGLIP here in Esherichia coli as a fusion with maltosebinding protein (MBP), part of the fusion being cleaved with a protease to obtain MBP-free TcGLIP. A kinetic analysis revealed that the MBP moiety scarcely influenced the kinetic parameters. The effects on acyltransferase activity of mutations of Gly64, Asn168, Asp318 and His321 were investigated by using MBP-fused TcGLIP. Mutations of these amino acids markedly reduced the acyltransferase activity, suggesting their critical role in the production of pyrethrins.
Total Syntheses of All Six Chiral Natural Pyrethrins: Accurate Determination of the Physical Properties, Their Insecticidal Activities, and Evaluation of Synthetic Methods
Ashida, Yuichiro,Kawamoto, Momoyo,Matsuo, Noritada,Moriyama, Mizuki,Tanabe, Yoo
, p. 2984 - 2999 (2020/03/24)
Chiral total syntheses of all six insecticidal natural pyrethrins (three pyrethrin I and three pyrethrin II compounds) contained in the chrysanthemum (pyrethrum) flower were performed. Three common alcohol components [(S)-cinerolone, (S)-jasmololone, and (S)-pyrethrolone] were synthesized: (i) straightforward Sonogashira-type cross-couplings using available (S)-4-hydroxy-3-methyl-2-(2-propynyl)cyclopent-2-en-1-ones (the prallethrin alcohol) for (S)-cinerolone (overall 52% yield, 98% ee) and (S)-pyrethrolone (overall 54% yield, 98% ee) and (ii) traditional decarboxylative-aldol condensation and lipase-catalyzed optical resolution for (S)-jasmololone (overall 16% yield, 96% ee). Two counter acid segments [(1R,3R)-chrysanthemic acid (A) and (1R,3R)-second chrysanthemic acid precursor (B)] were prepared: (i) C(1) epimerization of ethyl (±)-chrysanthemates and optical resolution using (S)-naphthylethylamine to afford A (96% ee) and (ii) concise derivatization of A to B (96% ee). All six pyrethrin esters (cinerin I/II, jasmolin I/II, and pyrethrin I/II) were successfully synthesized utilizing an accessible esterification reagent (TsCl/N-methylimidazole). To investigate the stereostructure-activity relationship, all four chiral stereoisomers of cinerin I were synthesized. Three alternative syntheses of (±)-jasmololone were investigated (methods utilizing Piancatelli rearrangement, furan transformation, and 1-nitropropene transformation). Insecticidal activity assay (KD50 and IC50) against the common mosquito (Culex pipiens pallens) revealed that (i) pyrethrin I > pyrethrin II, (ii) pyrethrin I (II) > cinerin I (II) ? jasmolin I (II), and (iii) "natural" cinerin I ? three "unnatural" cinerin I compounds (apparent chiral discrimination).
Synthesis of pyrethroids and pyrethroid-containing compositions
-
, (2016/11/24)
The present invention provides methods for synthesizing pyrethroid compounds. The methods include forming a first reaction comprising an olefin and an allethrolone-type unsaturated alcohol under conditions sufficient to form a metathesis product and converting the metathesis product to the pyrethroid. Methods of the invention can be used to prepare compounds including pyrethrin I, cinerin I, jasmolin I, pyrethrin II, cinerin II, and jasmolin II as well as other synthetic pyrethroid compounds. Insecticidal compositions and methods for controlling insects are also described.